Topic Review
Trophectoderm-Specific Knockdown of LIN28
LIN28 inhibits let-7 miRNA maturation which prevents cell differentiation and promotes proliferation. We hypothesized that the LIN28-let-7 axis regulates proliferation-associated genes in sheep trophectoderm in vivo. Day 9-hatched sheep blastocysts were incubated with lentiviral particles to deliver shRNA targeting LIN28 specifically to trophectoderm cells. At day 16, conceptus elongation was significantly reduced in LIN28A and LIN28B knockdowns. Let-7 miRNAs were significantly increased and IGF2BP1-3, HMGA1, ARID3B, and c-MYC were decreased in trophectoderm from knockdown conceptuses. Ovine trophoblast (OTR) cells derived from day 16 trophectoderm are a useful tool for in vitro experiments. Surprisingly, LIN28 was significantly reduced and let-7 miRNAs increased after only a few passages of OTR cells, suggesting these passaged cells represent a more differentiated phenotype. To create an OTR cell line more similar to day 16 trophectoderm we overexpressed LIN28A and LIN28B, which significantly decreased let-7 miRNAs and increased IGF2BP1-3, HMGA1, ARID3B, and c-MYC compared to control. This is the first study showing the role of the LIN28-let-7 axis in trophoblast proliferation and conceptus elongation in vivo. These results suggest that reduced LIN28 during early placental development can lead to reduced trophoblast proliferation and sheep conceptus elongation at a critical period for successful establishment of pregnancy.
  • 939
  • 29 Oct 2020
Topic Review
TRNT1 Gene
tRNA nucleotidyl transferase 1: The TRNT1 gene provides instructions for making a protein involved in the production (synthesis) of other proteins.
  • 475
  • 25 Dec 2020
Topic Review
TRNT1 Deficiency
TRNT1 deficiency is a condition that affects many body systems. Its signs and symptoms can involve blood cells, the immune system, the eyes, and the nervous system. The severity of the signs and symptoms vary widely.  
  • 852
  • 23 Dec 2020
Topic Review
TRNT1 and tRNA Maturation
tRNA nucleotidyl transferase 1 (TRNT1) is an essential enzyme catalyzing the addition of terminal cytosine-cytosine-adenosine (CCA) trinucleotides to all mature tRNAs, which is necessary for aminoacylation. It was recently discovered that partial loss-of-function mutations in TRNT1 are associated with various, seemingly unrelated human diseases including sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD), retinitis pigmentosa with erythrocyte microcytosis, and progressive B-cell immunodeficiency. In addition, even within the same disease, the severity and range of the symptoms vary greatly, suggesting a broad, pleiotropic impact of imparting TRNT1 function on diverse cellular systems. This entry describes the current state of knowledge of the TRNT1 function and the phenotypes associated with mutations in TRNT1.
  • 930
  • 05 Nov 2020
Topic Review
TRNA Modifications in Microorganisms
Transfer RNAs (tRNAs) are essential adaptors that mediate translation of the genetic code. Modifications to tRNA are installed as post-transcriptional events at multiple locations on the tRNA structure by specialized tRNA-modifying enzymes and can occur at the 2’OH group of the ribose moiety as well as various positions of all A, C, G, and U bases. These modifications are diverse in their chemical structures and functional properties, and respond to nutritional and environmental factors.
  • 1.2K
  • 18 Aug 2020
Topic Review
Tritordeum
Hexaploid tritordeum is the amphiploid derived from the cross between the wild barley Hordeum chilense and durum wheat. 
  • 981
  • 04 Jun 2021
Topic Review
Triticum Dicoccum
Emmer wheat or hulled wheat is a type of awned wheat. Emmer is a tetraploid (2n = 4x = 28 chromosomes). The domesticated types are Triticum turgidum subsp. dicoccum and Triticum turgidum conv. durum. The wild plant is called Triticum turgidum subsp. dicoccoides. The principal difference between the wild and the domestic is that the ripened seed head of the wild plant shatters and scatters the seed onto the ground, while in the domesticated emmer the seed head remains intact, thus making it easier for humans to harvest the grain. Along with einkorn wheat, emmer was one of the first crops domesticated in the Near East. It was widely cultivated in the ancient world, but is now a relict crop in mountainous regions of Europe and Asia. Emmer is considered a type of farro food especially in Italy.
  • 1.9K
  • 07 Nov 2022
Topic Review
Triticum Dicoccon
Emmer wheat or hulled wheat is a type of awned wheat. Emmer is a tetraploid (2n = 4x = 28 chromosomes). The domesticated types are Triticum turgidum subsp. dicoccum and Triticum turgidum conv. durum. The wild plant is called Triticum turgidum subsp. dicoccoides. The principal difference between the wild and the domestic is that the ripened seed head of the wild plant shatters and scatters the seed onto the ground, while in the domesticated emmer the seed head remains intact, thus making it easier for humans to harvest the grain. Along with einkorn wheat, emmer was one of the first crops domesticated in the Near East. It was widely cultivated in the ancient world, but is now a relict crop in mountainous regions of Europe and Asia. Emmer is considered a type of farro food especially in Italy.
  • 776
  • 08 Oct 2022
Topic Review Peer Reviewed
Triticale: A General Overview of Its Use in Poultry Production
Triticale, a hybrid of wheat and rye, is one of the most promising grain crops. In terms of productivity, the level of metabolizable energy, and the composition of essential amino acids, triticale surpasses rye and is not inferior to wheat. It is resistant to the most dangerous diseases and pests. In terms of nutritional value, triticale can compete with wheat, corn, sorghum, and barley. The presence, however, of antinutrients in triticale such as non-starch polysaccharides, alkylresorcinols, and trypsin inhibitors significantly reduces the biological value of this crop. In the global practice of compound feed production, there are many methods and technologies for processing grain raw materials to increase their nutritional value. Enzymatic treatment and extrusion technologies are worthy of special attention. The high content of triticale in the compound feed of poultry breeder flocks should be used effectively, taking into account the characteristics of triticale varieties and climatic conditions. An optimal triticale level in feed (15% for layer and broiler chicks) may improve body weight gain and reduce feed costs when raising replacement young stock. Layer breeder flocks fed a 20% triticale-based diet may have increased egg production, high viability, and flock uniformity. Producing triticale–soy and triticale–sunflower extrudates and supplementing the diet of poultry flocks with essential amino acids represent promising avenues for maximizing the benefits of triticale. Innovative methods of achieving this goal should be further developed and put into practice, particularly given the expansion of triticale’s cultivation areas.
  • 609
  • 21 Feb 2024
Topic Review
Triterpenoids in Momordica charantia
The vines and leaves of Momordica charantia L. are used as herbal medicines to treat inflammation-related disorders. However, their safety profile remains uncharacterized, and the constituents in their extracts that exert anti-inflammatory and adverse effects remain unclear. This study isolated the characteristic cucurbitane-type triterpenoid species in the vines and leaves of M. charantia L. and analyzed their cytotoxicity, anti-inflammatory effects, and underlying mechanisms. Four structurally related triterpenoids—momordicines I, II, IV, and (23E) 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD)—were isolated from the triterpenoid-rich fractions of extracts from the vines and leaves of M. charantia. Momordicine I was cytotoxic on normal cells, momordicine II exerted milder cytotoxicity, and momordicine IV and TCD had no obvious adverse effects on cell growth. TCD had anti-inflammatory activity both in vivo and in vitro. In lipopolysaccharide-stimulated RAW 264.7 cells, TCD inhibited the inhibitor kappa B kinase/nuclear factor-κB pathway and enhanced the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate-cysteine ligase modifier subunit through the extracellular signal-regulated kinase1/2 and p38. Thus, the vines and leaves of M. charantia should be used with caution. An extraction protocol that can enrich TCD but remove momordicine I would likely enhance the safety of the extract.
  • 465
  • 25 Jan 2022
  • Page
  • of
  • 1815
ScholarVision Creations