Topic Review
YAP/TAZ May Bridge Microgravity and Liver Dysfunction
Microgravity exposure during spaceflight causes the disordered regulation of liver function, presenting a specialized mechano-biological coupling process. While YAP/TAZ serves as a typical mechanosensitive pathway involved in hepatocyte metabolism, it remains unclear whether and how it is correlated with microgravity-induced liver dysfunction. Whether or not the data in liver functions are derived from infight or ground-based studies, or what types of observations are presented at the organism or cellular level, it is still critical to map out the potential gravity-sensitive signaling pathways from the above functional or phenotypic cues. 
  • 502
  • 10 May 2023
Topic Review
cGAS–Sting Signaling in Alzheimer’s Disease
There is mounting evidence that the development of Alzheimer’s disease (AD) interacts extensively with immunological processes in the brain and extends beyond the neuronal compartment. Accumulation of misfolded proteins can activate an innate immune response that releases inflammatory mediators and increases the severity and course of the disease. It is widely known that type-I interferon-driven neuroinflammation in the central nervous system (CNS) accelerates the development of numerous acute and chronic CNS diseases. It is becoming better understood how the cyclic GMP–AMP synthase (cGAS) and its adaptor protein Stimulator of Interferon Genes (STING) triggers type-I IFN-mediated neuroinflammation.
  • 627
  • 10 May 2023
Topic Review
Increased Crop Genetic Diversity in the Fields
Crop genetic diversity is the most important factor for a long-term sustainable production system. Breeding and production strategies for developing and growing uniform and homogenous varieties have created many problems. Such populations are static and very sensitive to unpredictable stresses.
  • 476
  • 09 May 2023
Topic Review
SARS-CoV-2 Virus Manipulation Using Electric Fields
Studying the mechanisms of virus deactivation could have huge benefits for battling pandemics such as COVID-19. Using electric fields as a tool may allow us to integrate the trapping, sampling and inactivation of viruses on a single microchip platform.
  • 256
  • 09 May 2023
Topic Review
Viral Vector-Based Gene Therapy
Gene therapy is a technique involving the modification of an individual’s genes for treating a particular disease. The key to effective gene therapy is an efficient carrier delivery system. Viral vectors that have been artificially modified to lose their pathogenicity are used widely as a delivery system, with the key advantages of their natural high transduction efficiency and stable expression. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes. Long-term gene therapy involves the administration of a specific genetic material (i.e., DNA or RNA) via a carrier, referred to as a “delivery vector,” which facilitates the entry of the foreign genetic material into target cells. The delivery vectors are of two types: viral vectors and non-viral vectors. The commonly used viral vectors are adeno-associated viruses (AAVs), adenoviruses (Ads), or lentiviruses (LVs).
  • 430
  • 09 May 2023
Topic Review
Genome–Environment Interactions and Psychiatric Disorders
Environmental factors are known to interact with the genome by altering epigenetic mechanisms regulating gene expression and contributing to the pathogenesis of psychiatric disorders. 
  • 226
  • 09 May 2023
Topic Review
Edible Insects as a Source of Dietary Fiber
The consumption of insects as an alternative protein source is acceptable as a sustainable alternative to mainstream protein sources. Apart from containing a high protein content, insects also have dietary fiber in the form of chitin, which helps to enrich gut microbiota. The importance of the gut microbiome in general health has recently been underlined for humans, farm animals, pets, poultry, and fish. The advances in 16S RNA techniques have enabled the examination of complex microbial communities in the gastrointestinal tract, shedding more light on the role of diet in disease and immunity. The gut microbiome generates signals influencing the normal nutritional status, immune functions, metabolism, disease, and well-being. The gut microbiome depends on dietary fiber; hence, their diversity is modulated by diet, a relevant factor in defining the composition of gut microbiota. Small shifts in diet have demonstrated an enormous shift in gut microbiota. Edible insects are an excellent source of protein, fat, and chitin that could influence the gut microbiota as a prebiotic. Chitin from insects, when consumed, contributes to a healthy gut microbiome by increasing diversity in fecal microbiota. Moreover, a high fiber intake has been associated with a reduced risk of breast cancer, diverticular disease, coronary heart disease, and metabolic syndrome.
  • 362
  • 09 May 2023
Topic Review
Purification of Myosin from Bovine Tracheal Smooth Muscle
Dynamic regulation of myosin filaments is a crucial factor in the ability of airway smooth muscle (ASM) to adapt to a wide length range. Increased stability or robustness of myosin filaments may play a role in the pathophysiology of asthmatic airways. Biochemical techniques for the purification of myosin and associated regulatory proteins could help elucidate potential alterations in myosin filament properties of asthmatic ASM. 
  • 275
  • 09 May 2023
Topic Review
Compounds Inhibiting Noppera-bo as Insect Growth Regulators
Glutathione S-transferases (GSTs) are conserved in a wide range of organisms, including insects. In 2014, an epsilon GST, known as Noppera-bo (Nobo), was shown to regulate the biosynthesis of ecdysteroid, the principal steroid hormone in insects. Studies on fruit flies, Drosophila melanogaster, and silkworms, Bombyx mori, demonstrated that loss-of-function mutants of nobo fail to synthesize ecdysteroid and die during development, consistent with the essential function of ecdysteroids in insect molting and metamorphosis. This genetic evidence suggests that chemical compounds that inhibit activity of Nobo could be insect growth regulators (IGRs) that kill insects by disrupting their molting and metamorphosis. In addition, because nobo is conserved only in Diptera and Lepidoptera, a Nobo inhibitor could be used to target IGRs in a narrow spectrum of insect taxa. Dipterans include mosquitoes, some of which are vectors of diseases such as malaria and dengue fever. Given that mosquito control is essential to reduce mosquito-borne diseases, new IGRs that specifically kill mosquito vectors are always in demand. 
  • 381
  • 09 May 2023
Topic Review
The Promise of Microbial Bioeconomy
Naturally occurring resources, such as water, energy, minerals, and rare earth elements, are limited in availability, yet they are essential components for the survival and development of all life. The pressure on these finite resources is anthropogenic, arising from misuse, overuse, and overdependence, which causes a loss of biodiversity and climate change and poses great challenges to sustainable development. The focal points and principles of the bioeconomy border around ensuring the constant availability of these natural resources for both present and future generations. The rapid growth of the microbial bioeconomy is promising for the purpose of fostering a resilient and sustainable future. This highlights the economic opportunity of using microbial-based resources to substitute fossil fuels in novel products, processes, and services. 
  • 533
  • 09 May 2023
  • Page
  • of
  • 1815
ScholarVision Creations