Topic Review
Sulfotransferase (SOT) Gene Family in Potato (Solanum tuberosum)
Various kinds of primary metabolisms in plants are modulated through sulfate metabolism, and sulfotransferases (SOTs), which are engaged in sulfur metabolism, catalyze sulfonation reactions. In this study, a genome-wide approach was utilized for the recognition and characterization of SOT family genes in the significant nutritional crop potato (Solanum tuberosum L.). Twenty-nine putative StSOT genes were identified in the potato genome and were mapped onto the nine S. tuberosum chromosomes. The protein motifs structure revealed two highly conserved 5′-phosphosulfate-binding (5′ PSB) regions and a 3′-phosphate-binding (3′ PB) motif that are essential for sulfotransferase activities. The protein–protein interaction networks also revealed an interesting interaction between SOTs and other proteins, such as PRTase, APS-kinase, protein phosphatase, and APRs, involved in sulfur compound biosynthesis and the regulation of flavonoid and brassinosteroid metabolic processes. This suggests the importance of sulfotransferases for proper potato growth and development and stress responses. Notably, homology modeling of StSOT proteins and docking analysis of their ligand-binding sites revealed the presence of proline, glycine, serine, and lysine in their active sites. An expression essay of StSOT genes via potato RNA-Seq data suggested engagement of these gene family members in plants’ growth and extension and responses to various hormones and biotic or abiotic stimuli. Our predictions may be informative for the functional characterization of the SOT genes in potato and other nutritional crops.
  • 591
  • 13 Dec 2021
Topic Review
Sulfolobus Solfataricus
Saccharolobus solfataricus is a species of thermophilic archaeon. It was transferred from the genus Sulfolobus to the new genus Saccharolobus with the description of Saccharolobus caldissimus in 2018. It was first isolated and discovered in the Solfatara volcano (which it was subsequently named after) in 1980 by two Germans microbiologists Karl Setter and Wolfram Zillig, in Solfatara volcano (Pisciarelli-Campania, Italy). However, these organisms are not isolated to volcanoes but are found all over the world in places such as hot springs. The species grows best in temperatures around 80° Celsius, a pH level between 2 and 4, and enough sulfur for solfataricus to metabolize in order to gain energy. These conditions qualify it as an extremophile and it is specifically known as a thermoacidophile because of its preference to high temperatures and low pH levels and it is also in aerobic and heterotropic categories for its metabolic system. It usually has a spherical cell shape and it makes frequent lobes. Being an autotroph it receives energy from growing on sulfur or even a variety of organic compounds. Currently, it is the most widely studied organism that is within the Crenarchaeota branch. Solfataricus are researched for their methods of DNA replication, cell cycle, chromosomal integration, transcription, RNA processing, and translation. All the data points to the organism having a large percent of archaeal-specific genes, which showcases the differences between the three types of microbes: archaea, bacteria, and eukarya.
  • 1.9K
  • 04 Nov 2022
Topic Review
Sulfolobus Metallicus
Sulfolobus metallicus is a coccoid shaped thermophilic archaeon. It is a strict chemolithoautotroph gaining energy by oxidation of sulphur and sulphidic ores into sulfuric acid. Its type strain is Kra 23 (DSM 6482). It has many uses that take advantage of its ability to grow on metal media under acidic and hot environments.
  • 476
  • 15 Nov 2022
Topic Review
Sulfated Polysaccharides from Seaweeds
Sulfated polysaccharides derived from seaweeds, considered a potential source of bioactive compounds for drug development, have shown antiviral activity against a broad spectrum of viruses, mainly including common DNA viruses and RNA viruses. In addition, sulfated polysaccharides can also improve the body’s immunity. Sulfated polysaccharides from seaweeds, including carrageenan, galactan, fucoidan, alginate, ulvan, p-KG03, naviculan, and calcium spirulan, may provide new ideas for the development of COVID-19 therapeutics and vaccines.
  • 902
  • 16 May 2022
Topic Review
Sulfated Polysaccharides from Marine Algae
Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on a multitude of factors. Wound treatment is a major healthcare issue that can be resolved by the development of effective and affordable wound dressings based on natural materials and biologically active substances. The proper use of modern wound dressings can significantly accelerate wound healing with minimum scar mark. Sulfated polysaccharides from seaweeds, with their unique structures and biological properties, as well as with a high potential to be used in various wound treatment methods, now undoubtedly play a major role in innovative biotechnologies of modern natural interactive dressings.
  • 647
  • 25 Jun 2021
Topic Review
Sulfated Galactofucans
Fucoidans encompass versatile and heterogeneous sulfated biopolysaccharides of marine origin, specifically brown algae and marine invertebrates. The reported studies revealed diverse chemical skeletons in which l-fucose is the main sugar monomer. However, other sugars, i.e., galactose, mannose, etc., have been identified to be interspersed, forming several heteropolymers, including galactofucans/fucogalactans (G-fucoidans). Particularly, sulfated galactofucans are associated with rich chemistry contributing to more promising bioactivities than fucans and other marine polysaccharides. The previous reports showed that G-fucoidans derived from Undaria pinnatifida were the most studied; 21 bioactivities were investigated, especially antitumor and antiviral activities, and unique biomedical applications compared to other marine polysaccharides were demonstrated.
  • 427
  • 30 Jun 2022
Topic Review
Sulfate-Reducing Bacteria
Sulfate-reducing bacteria (SRB) are a group of anaerobic microorganisms that can be present in the environment and gastrointestinal tract as a part of the intestinal microbiome and can be involved in inflammatory bowel diseases (IBDs), including ulcerative colitis in the human and animals.
  • 2.4K
  • 07 Feb 2021
Topic Review
Sulfate Reduction in Intestinal Bacteria
Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects).
  • 1.0K
  • 26 May 2021
Topic Review
Suicidal Erythrocyte Death in Metabolic Syndrome
Eryptosis is a coordinated, programmed cell death culminating with the disposal of cells without disruption of the cell membrane and the release of endocellular oxidative and pro-inflammatory milieu. While providing a convenient form of death for erythrocytes, dysregulated eryptosis may result in a series of detrimental and harmful pathological consequences highly related to the endothelial dysfunction (ED). Metabolic syndrome (MetS) is described as a cluster of cardiometabolic factors (hyperglycemia, dyslipidemia, hypertension and obesity) that increases the risk of cardiovascular complications such as those related to diabetes and atherosclerosis.
  • 556
  • 01 Aug 2022
Topic Review
Sugars and CKs in seeds
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle.
  • 710
  • 19 Feb 2021
  • Page
  • of
  • 1815
ScholarVision Creations