Topic Review
T Cell Immune Checkpoint Molecules in HIV
T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. The human immunodeficiency virus (HIV) is a human pathogen that attacks the immune system by targeting CD4+ T lymphocytes. HIV infection can result in acquired immunodeficiency syndrome (AIDS), a fatal stage at which the host immune system collapses and becomes vulnerable to many types of opportunistic infections.
  • 341
  • 10 Nov 2022
Topic Review
T Cell Chemotaxis and Infiltration in Glioblastoma
Glioblastoma is an immunologically ‘cold’ tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. 
  • 404
  • 04 Nov 2021
Topic Review
T Cell Based Immunotherapy for Cancer
T cells are critical in destroying cancer cells by recognizing antigens presented by MHC molecules on cancer cells or antigen-presenting cells. Identifying and targeting cancer-specific or overexpressed self-antigens is essential for redirecting T cells against tumors, leading to tumor regression. This is achieved through the identification of mutated or overexpressed self-proteins in cancer cells, which guide the recognition of cancer cells by T-cell receptors. There are two main approaches to T cell-based immunotherapy: HLA-restricted and HLA-non-restricted Immunotherapy. 
  • 256
  • 25 Apr 2023
Topic Review
Systems Immunology Approach for Tumor Microenvironment
The tumor microenvironment (TME) is a complex and dynamic system that plays a critical role in cancer development and progression. It consists of a variety of cell types, including cancer cells, immune cells, and stromal cells (fibroblasts and endothelial cells), as well as extracellular matrix components and signaling molecules.
  • 285
  • 08 Aug 2023
Topic Review
Systems Biology Findings and Applications in Asthma
Asthma is one of the most common and lifelong and chronic inflammatory diseases characterized by inflammation, bronchial hyperresponsiveness, and airway obstruction episodes. It is a heterogeneous disease of varying and overlapping phenotypes with many confounding factors playing a role in disease susceptibility and management. Such multifactorial disorders will benefit from using systems biology as a strategy to elucidate molecular insights from complex, quantitative, massive clinical, and biological data that will help to understand the underlying disease mechanism, early detection, and treatment planning.
  • 384
  • 15 Nov 2022
Topic Review
Systemic Signaling in Propelling Crop Yield
Food security has become a topic of great concern in many countries. Global food security depends heavily on agriculture that has access to proper resources and best practices to generate higher crop yields. Crops, as with other plants, have a variety of strategies to adapt their growth to external environments and internal needs. In plants, the distal organs are interconnected through the vascular system and intricate hierarchical signaling networks, to communicate and enhance survival within fluctuating environments. Photosynthesis and carbon allocation are fundamental to crop production and agricultural outputs.
  • 383
  • 09 Jun 2022
Topic Review
Systemic Sclerosis
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology. SSc causes damage to the skin and various organs including the lungs, heart, and digestive tract, but the extent of the damage varies from patient to patient. The pathology of SSc includes ischemia, inflammation, and fibrosis, but the degree of progression varies from case to case. Many cytokines have been reported to be involved in the pathogenesis of SSc. For example, interleukin-6 is associated with inflammation, and transforming growth factor-β and interleukin-13 are associated with fibrosis. Therapeutic methods to control these cytokines have been proposed; however, which cytokines have a dominant role in SSc might differ depending on the stage of disease progression and the extent of visceral lesions. Therefore, it is necessary to consider the disease state of the patient when an anti-cytokine therapy is conducted.
  • 406
  • 26 Jul 2021
Topic Review
Systemic Scleroderma
Systemic scleroderma is an autoimmune disorder that affects the skin and internal organs. Autoimmune disorders occur when the immune system malfunctions and attacks the body's own tissues and organs. The word "scleroderma" means hard skin in Greek, and the condition is characterized by the buildup of scar tissue (fibrosis) in the skin and other organs. The condition is also called systemic sclerosis because the fibrosis can affect organs other than the skin. Fibrosis is due to the excess production of a tough protein called collagen, which normally strengthens and supports connective tissues throughout the body.  
  • 438
  • 23 Dec 2020
Topic Review
Systemic Mastocytosis
Systemic mastocytosis is a blood disorder that can affect many different body systems. Individuals with the condition can develop signs and symptoms at any age, but it usually appears after adolescence.  
  • 434
  • 23 Dec 2020
Topic Review
Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a chronic disease that causes inflammation in connective tissues, such as cartilage and the lining of blood vessels, which provide strength and flexibility to structures throughout the body. The signs and symptoms of SLE vary among affected individuals, and can involve many organs and systems, including the skin, joints, kidneys, lungs, central nervous system, and blood-forming (hematopoietic) system. SLE is one of a large group of conditions called autoimmune disorders that occur when the immune system attacks the body's own tissues and organs.  
  • 648
  • 23 Dec 2020
  • Page
  • of
  • 1815
ScholarVision Creations