Topic Review
Toll-Like Receptor 4
Toll-like receptors (TLRs) are type I transmembrane glycoproteins belonging to the complex pattern recognition receptors (PRRs) expressed in immune and non-immune cells, including neurons and glia, which are involved in the regulation of innate immune and inflammatory responses. The TLR family comprises 11 members (TLR1–TLR11) in human and 12 (TLR1–TLR9, TLR11–TLR13) in mouse. TLR4 is one of the best characterized TLRs that surveys for the presence of structural motifs in a wide array of invading microorganisms, named pathogen-associated molecular patterns (PAMPs), and endogenous damage or danger molecular patterns (DAMPs), also known as alarmins, released by damaged cells and injured tissues or derived from apoptotic and necrotic cells. Activation of TLR4 induces the downstream start of inflammasome pathways which results in the release of a plethora of pro-inflammatory cytokines, Type I interferons (IFNs) and other inflammatory mediators.
  • 972
  • 28 Mar 2023
Topic Review
Toll-like Receptor 2 in Pro- and Anti-Inflammatory Processes
While a certain level of inflammation is critical for humans to survive infection and injury, a prolonged inflammatory response can have fatal consequences. Pattern recognition Toll-like receptors (TLRs) are key players in the initiation of an inflammatory process. TLR2 is one of the most studied pattern recognition receptors (PRRs) and is known to form heterodimers with either TLR1, TLR4, TLR6, and TLR10, allowing it to recognize a wide range of pathogens.
  • 375
  • 17 Aug 2023
Topic Review
Toll-Like Receptor 2
TLRs are one of four major families of pattern recognition receptor (PRRs), which include also NOD-like receptors (NLRs), RIG-like receptors (RLRs), C-type lectin receptors (CLRs), and represent the cornerstone of the innate immune response. TLR2, together with TLR1, TLR3, TLR4, and TLR5, was first identified and characterized in 1998. TLR2 is the only TLR that forms functional heterodimers with more than two other types of TLRs, forming dimers with TLR1, TLR6, and in some cases with TLR4. TLR2 recognizes molecules frequently associated with pathogens, the so-called pathogen-associated molecular patterns (PAMPs), leading to activation of downstream signal transduction pathways, which result in the production of inflammatory cytokines, type I interferons (IFNs), and other mediators necessary for the development of effective immune responses. Moreover, TLR2 is involved in the recognition of damage-associated molecular patterns (DAMPs), released by damaged tissues.
  • 964
  • 18 Dec 2020
Topic Review
Tolerogenic Vaccines to Induce Antigen-Specific Tolerance
Conventional therapies for immune-mediated diseases, including autoimmune disorders, transplant reactions, and allergies, have undergone a radical evolution in the last few decades; however, they are still not specific enough to avoid widespread immunosuppression. The idea that vaccine usage could be extended beyond its traditional immunogenic function by encompassing the ability of vaccines to induce antigen-specific tolerance may revolutionize preventive and therapeutic strategies in several clinical fields that deal with immune-mediated disorders. 
  • 1.0K
  • 22 Sep 2022
Topic Review
ToLCNDV
The tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite, single-stranded begomovirus that was first identified in India in 1995 affecting solanaceous crops. A different strain, named ToLCNDV-ES, was introduced in Spain in 2012 and causes severe symptoms in zucchini crops. Virus transmission experiments with the whitefly Bemisia tabaci, were used to compare the transmission parameters in zucchini and tomato plants.
  • 934
  • 28 Feb 2022
Topic Review
Tocotrienols
Tocotrienols (T3s), members of the vitamin E family, are natural compounds found in various food sources and exist as four naturally occurring analogues known as alpha (α), beta (β), delta (δ), and gamma (γ).
  • 537
  • 29 Nov 2021
Topic Review
Tocochromanols in Cereals
Tocochromanols, which encompass tocopherols and tocotrienols and constitute the vitamin E family, are widely distributed in cereal kernels; their biosynthetic pathway has been extensively studied with the aim to enrich plant oils and combat vitamin E deficiency in humans. Here researchers provide strong assumptions arguing in favor of an involvement of tocochromanols in plant–fungal pathogen interactions. Tocochromanols are plant compounds with a strong antioxidant potential. The biosynthesis of this class of compounds draws on metabolites from the terpenoid and shikimate pathways. Tocochromanols are acknowledged to efficiently quench singlet oxygen and scavenge various radicals, especially lipid peroxyl radicals derived from polyunsaturated fatty acids, thereby terminating lipid peroxidation chain reactions. 
  • 444
  • 08 Sep 2023
Topic Review
Tobacco Carbohydrates as Bioactive Compounds
Carbohydrates are important compounds in natural products where they primarily serve as a source of energy, but they have important secondary roles as precursors of aroma or bioactive compounds. They are present in fresh and dried (cured) tobacco leaves as well. The sugar content of tobacco depends on the tobacco variety, harvesting, and primarily on the curing conditions (temperature, time and moisture). If the process of curing employs high temperatures (flue-curing and sun-curing), final sugar content is high. In contrast, when air curing has a lower temperature, at the end of the process, sugar level is low. Beside simple sugars, other carbohydrates reported in tobacco are oligosaccharides, cellulose, starch, and pectin. Degradation of polysaccharides results in a higher yield of simple sugars, but at the same time reduces sugars oxidization and transfer into carbon dioxide and water. Loss of sugar producers will compensate with added sugars, to cover undesirable aroma properties and achieve a better, pleasant taste during smoking.
  • 778
  • 24 Nov 2021
Topic Review
TNXB Gene
Tenascin XB: The TNXB gene provides instructions for making a protein called tenascin-X.
  • 751
  • 25 Dec 2020
Topic Review
TNNT3 Gene
Troponin T3, fast skeletal type: The TNNT3 gene provides instructions for making one form of a protein called troponin T.
  • 435
  • 25 Dec 2020
  • Page
  • of
  • 1815
ScholarVision Creations