Topic Review
Neurotropic Black Yeast Exophiala dermatitidis
The neurotropic and extremophilic black yeast Exophiala dermatitidis (Herpotrichellaceae) inhabits diverse indoor environments, in particular bathrooms, steam baths and dishwashers. It can grow at human body temperature, assimilate cyclic hydrocarbons and human neurotransmitters. Accordingly, they are capable to grow in artificial and natural environments, including synthetic/rubber hydrocarbon-rich materials. Their polymorphic nature allows them to survive environmental stress, such as UV radiation, high temperatures, pH fluctuations, low water activity and others. E. dermatitidis is known as extremely plastic which has evolutionarily led to adaptation on the human body. It causes numerous infections in almost all human organs, and may also be associated with Alzheimer’s disease.
  • 1.1K
  • 29 Oct 2020
Topic Review
Essential Oils and Terpenoids Effects
Weeds are one of the major constraints in crop production affecting both yield and quality. The excessive and exclusive use of synthetic herbicides for their management is increasing the development of herbicide-resistant weeds and is provoking risks for the environment and human health. Therefore, the development of new herbicides with multitarget-site activity, new modes of action and low impact on the environment and health are badly needed. The study of plant–plant interactions through the release of secondary metabolites could be a starting point for the identification of new molecules with herbicidal activity. Essential oils (EOs) and their components, mainly terpenoids, as pure natural compounds or in mixtures, because of their structural diversity and strong phytotoxic activity, could be good candidates for the development of new bioherbicides or could serve as a basis for the development of new natural-like low impact synthetic herbicides. EOs and terpenoids have been largely studied for their phytotoxicity and several evidences on their modes of action have been highlighted in the last decades through the use of integrated approaches.
  • 1.1K
  • 25 Nov 2020
Topic Review
Coronary Vasculitis
The term coronary “artery vasculitis” is used for a diverse group of diseases with a wide spectrum of manifestations and severity. Clinical manifestations may include pericarditis or myocarditis due to involvement of the coronary microvasculature, stenosis, aneurysm, or spontaneous dissection of large coronaries, or vascular thrombosis. As compared to common atherosclerosis, patients with coronary artery vasculitis are younger and often have a more rapid disease progression. Several clinical entities have been associated with coronary artery vasculitis, including Kawasaki’s disease, Takayasu’s arteritis, polyarteritis nodosa, ANCA-associated vasculitis, giant-cell arteritis, and more recently a Kawasaki-like syndrome associated with SARS-COV-2 infection.
  • 1.1K
  • 11 Jun 2021
Topic Review
Microglial Staining
Neuroinflammation has recently been identified as a fundamentally important pathological process in most, if not all, CNS diseases. The main contributor to neuroinflammation is the microglia, which constitute the innate immune response system. Accurate identification of microglia and their reactivity state is therefore essential to further understanding of CNS pathophysiology. Many staining techniques have been used to visualise microglia in rodent and human tissue, and immunostaining is currently the most frequently used.
  • 1.1K
  • 29 Apr 2022
Topic Review
Nutritional Composition of Flaxseeds
Flaxseed (Linum usitatissimum L.) has gained worldwide recognition as a health food because of its abundance in diverse nutrients and bioactive compounds such as oil, fatty acids, proteins, peptides, fiber, lignans, carbohydrates, mucilage, and micronutrients. These constituents attribute a multitude of beneficial properties to flaxseed that makes its use possible in various applications, such as nutraceuticals, food products, cosmetics, and biomaterials.
  • 1.1K
  • 25 Oct 2022
Topic Review
Fibroblasts
Fibroblasts, the most abundant cells in the connective tissue, are key modulators of the extracellular matrix (ECM) composition.
  • 1.1K
  • 18 Jan 2021
Topic Review
Genetic Engineering of Actinomycetes
The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the “actinomycetes era”, in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review  (Antibiotics 2020, 9(8), 494; https://doi.org/10.3390/antibiotics9080494), we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015–2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.
  • 1.1K
  • 28 Dec 2020
Topic Review
ESKAPE Bacteria in the Dog
ESKAPE bacteria (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a group of common opportunistic pathogens associated mainly with nosocomial infections.
  • 1.1K
  • 30 Oct 2020
Topic Review
Viral Vectored Vaccines
Viral Vectored Vaccines are vaccines that use a viral vector as a carrier to deliver a protein (or antigen) from a pathogen (namely viruses and bacteria) in order to elicit an immune response against this pathogen.  The DNA or RNA sequence for this protein antigen is inserted into the genome of the virus vector. The resultant recombinant virus expresses the necessary components of the viral vector so that functional virus particles can be made to express the foreign protein antigen.  Viral vectored vaccines are classified by the virus vector they use and whether they can reproduce inside cells to produce new virus particles (i.e., are replication competent) or whether they can only enter cells but do not produce new virus particles (i.e., are replication incompetent or single-cycle replication).  Different viral vector backbones can serve different needs for developing preventive and therapeutic vaccines depending on the context and diseases they aim to prevent or treat, respectively.
  • 1.1K
  • 30 Dec 2020
Topic Review
Methylation
Methylation is a universal biochemical process which covalently adds methyl groups to a variety of molecular targets. It plays a critical role in two major global regulatory mechanisms, epigenetic modifications and imprinting, via methyl tagging on histones and DNA. During reproduction, the two genomes that unite to create a new individual are complementary but not equivalent. Methylation determines the complementary regulatory characteristics of male and female genomes. DNA methylation is executed by methyltransferases that transfer a methyl group from S-adenosylmethionine, the universal methyl donor, to cytosine residues of CG (also designated CpG). Histones are methylated mainly on lysine and arginine residues. The methylation processes regulate the main steps in reproductive physiology: gametogenesis, and early and late embryo development, and thus play a crucial role in the transmission of life. 
  • 1.1K
  • 17 Dec 2020
  • Page
  • of
  • 1748
ScholarVision Creations