Topic Review
Porphyromonas gingivalis on Biomaterials
It was found that Porphyromonas gingivalis (P. gingivalis) was frequently found at the peri-implantitis site. P. gingivalis is a Gram-negative, obligately anaerobic, non-motile, and non-spore-forming bacterium with several virulence factors: hyaluronidase and chondroitin sulfatase enzymes, lipopolysaccharide (LPS) capsule, fimbriae, collagenase, and aminopeptidase.
  • 234
  • 02 Sep 2022
Topic Review
3D Guided Insertion of Orthodontic Titanium Miniscrews
Orthodontic mini-implants (MIs), also called temporary anchorage devices (TADs), have been considered to be effective tools for intraoral anchorage reinforcement for many years. Their main advantages are their easy application, the possibility to use them at various stages of treatment and the predictability of biomechanical effects.
  • 345
  • 10 Dec 2021
Topic Review
3D Printing for Periodontal Regeneration
The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics.
  • 646
  • 14 Apr 2021
Topic Review
Accuracy of 3-Dimensionally Printed Full-Arch Dental Models
Accuracy of 3D printed models varied widely between <100 to >500 μm with the majority of models deemed of clinically acceptable accuracy. The smallest (3.3 μm) and largest (579 μm) mean errors were produced by SLA printers. For digital light processing (DLP), majority of investigated printers (n = 6/8) produced models with <100 μm accuracy. Manufacturing parameters, including layer thickness, base design, postprocessing and storage, significantly influenced the model’s accuracy. 
  • 287
  • 21 Dec 2021
Topic Review
Acrylate Polymers in Dentistry
Concerning the composition and method of polymerization initiation, polymers for the production of denture bases are divided into four types: heat-, cold-, light-, and microwave-polymerized. Computer-Aided Design and Manufacturing (CAD/CAM) acrylate dentures are made from factory blocks of dental acrylates and show optimal mechanical and physical properties, undoubtedly better monomer polymerization and thus biocompatibility, and stability of the shape and colour of the base and dentures. Regardless of the number of advantages that these polymers have to offer, they also exhibit certain disadvantages. Technological development enables the enhancement of all acrylate properties to respond better to the demands of the profession. Special attention should be paid to improving the biological characteristics of acrylate polymers, due to reported adverse reactions of patients and dental staff to potentially toxic substances released during their preparation and use. 
  • 241
  • 03 Nov 2022
Topic Review
Additive Manufacturing Processes
Additive manufacturing (AM, 3D printing) is used in many fields and different industries. In the medical and dental field, every patient is unique and, therefore, AM has significant potential in personalized and customized solutions. This text explores what additive manufacturing processes and materials are utilized in medical and dental applications, especially focusing on processes that are less commonly used. The processes are categorized in ISO/ASTM process classes: powder bed fusion, material extrusion, VAT photopolymerization, material jetting, binder jetting, sheet lamination and directed energy deposition combined with classification of medical applications of AM. Based on the findings, it seems that directed energy deposition is utilized rarely only in implants and sheet lamination rarely for medical models or phantoms. Powder bed fusion, material extrusion and VAT photopolymerization are utilized in all categories. Material jetting is not used for implants and biomanufacturing, and binder jetting is not utilized for tools, instruments and parts for medical devices. The most common materials are thermoplastics, photopolymers and metals such as titanium alloys. If standard terminology of AM would be followed, this would allow a more systematic review of the utilization of different AM processes.
  • 731
  • 09 Apr 2021
Topic Review
Amelioration Strategies for Silver Diamine Fluoride
Topical cariostatic agents have become a reasonable alternative for managing dental caries in young children. Silver diamine fluoride (SDF) is a practical topical approach to arrest caries and avoid extensive and risky dental treatment. The rapid oxidation of ionic silver darkens demineralised tooth structure permanently. In this regard, nano-metallic antimicrobials could augment or substitute for silver, and thereby enhance SDF aesthetic performance.
  • 50
  • 20 Feb 2023
Topic Review
Amelogenin-Derived Peptides
Amelogenins are enamel matrix proteins currently used to treat bone defects in periodontal surgery. Recent studies have highlighted the relevance of amelogenin-derived peptides, named LRAP, TRAP, SP, and C11, in bone tissue engineering. Interestingly, these peptides seem to maintain or even improve the biological activity of the full-length protein, which has received attention in the field of bone regeneration.
  • 292
  • 11 Oct 2021
Topic Review
Anterior Open Bite Treatment with Skeletal Anchorage
Anterior open bite (AOB) is still one of the most difficult and demanding clinical problems. This malocclusion relies on a reduction in the vertical relationship between the incisal edges of the upper and lower incisors.
  • 281
  • 29 Dec 2021
Topic Review
Anti-tumor Photodynamic Therapy
Anti-tumor photodynamic therapy (PDT) is a unique oxidative stress-based modality that has proven highly effective on a variety of solid malignancies. Endogenous nitric oxide (NO) has a critical role in the therapeutic outcome of this modality.
  • 230
  • 27 Apr 2021
  • Page
  • of
  • 25