Topic Review
Precipitation Monitoring Using Commercial Microwave Links
As rainfall exhibits high spatiotemporal variability, accurate and real-time rainfall monitoring is vitally important in fields such as hydrometeorological research, agriculture and disaster prevention and control. The utilization of commercial microwave links (CMLs) for rainfall estimation, as an opportunistic sensing method, has generated considerable attention. Relying on CML networks deployed and maintained by mobile network operators can provide near-surface precipitation information over large areas at a low cost. 
  • 197
  • 20 Oct 2023
Topic Review
Potential Ozone Impacts of Landfills
Landfill gas produces ozone precursors such as nitrogen oxides and formaldehyde when combusted in flares or stationary engines. Solid waste landfills are also the third largest anthropogenic source of methane in the United States. Methane is both a greenhouse gas and a tropospheric ozone precursor. Despite its low photochemical reactivity, methane may noticeably affect urban ozone if released in large quantities along with other organic compounds in landfill gas. A fine-scale 3D Eulerian chemical transport model was used to demonstrate that, under meteorological and background chemical conditions conducive to high ozone concentrations, typical emissions of ozone precursors from a single hypothetical landfill may result in persistent daytime additions to ozone of over 1 part per billion (ppb) by volume tens of kilometers downwind.
  • 545
  • 14 Jul 2021
Topic Review
Polychlorinated Biphenyls (PCBs) Pollution in the Air
Polychlorinated biphenyls (PCBs) were widely used in industrial and commercial applications, until they were banned in the late 1970s as a result of their significant environmental pollution. PCBs in the environment gained scientific interest because of their persistence and the potential threats they pose to humans. Traditionally, human exposure to PCBs was linked to dietary ingestion.
  • 570
  • 15 Nov 2022
Topic Review
Pollutant Dispersion
This entry reviews atmospheric processes affecting pollutant transport and diffusion over complex terrain, focusing in particular on the peculiarities of processes over mountains when compared to flat terrain. In fact, pollutant dispersion processes over complex terrain are much more complicated than over flat areas, as they are affected by atmospheric interactions with the orography at different spatial scales. In particular, atmospheric flows over complex terrain are characterized by a continuous and interacting range of scales, from synoptic forcing to mesoscale circulations and turbulence fluctuations. In complex terrain, the mechanical and thermal influence of the orography can modify the large-scale flow and produce smaller-scale motions which would not exist on flat terrain, thus enhancing the spatial and temporal variability of atmospheric processes relevant for pollutant dispersion.
  • 1.6K
  • 26 Oct 2020
Topic Review
Polar Vortex Causes Temporal Variability of Solar-Atmospheric Links
The stratospheric polar vortex is a large-scale cyclonic circulation that forms in a cold air mass in the polar region and extends from the middle troposphere to the stratosphere. The polar vortex is implicated in a variety of atmospheric processes, such as the formation of ozone holes, the North Atlantic and the Arctic Oscillations, variations in extratropical cyclone tracks, etc. The vortex plays an important part in the mechanism of solar activity influence on lower atmosphere circulation, with variations in the vortex intensity being responsible for temporal variability in the correlation links observed between atmospheric characteristics and solar activity phenomena. In turn, the location of the vortex is favorable for the influence of ionization changes associated with charged particle fluxes (cosmic rays, auroral and radiation belt electrons) that affect the chemical composition and temperature regime of the polar atmosphere as well as its electric properties and cloudiness state. 
  • 344
  • 08 Aug 2022
Topic Review
PM0.1 in Southeast Asian Cities
PM0.1 (particles with a diameter ≤ 0.1 µm), nanoparticles (NPs), or ultrafine particles (UFPs) were interchangeably used in the scientific communities. PM0.1 originated from both natural and human sources.
  • 602
  • 30 Aug 2022
Topic Review
Physical and Chemical Aspects of Fog Water
Fog water have been rapidly increasing due to its negative impacts on different environmental processes. However, fog water harvesting has become beneficial in various countries to overcome water scarcity. Accurate fog forecasting remains a challenging issue due to its spatio-temporal variability and uncertainties despite the development and efforts made to understand its chemistry and microphysics. The literature proved that the decrease in fog frequency over time in most countries is mainly attributed to the improvement in air quality or the change in regional climatic conditions. 
  • 2.7K
  • 05 Jan 2024
Topic Review
Outdoor Air Pollution and Childhood Respiratory Disease
The leading mechanisms through which air pollutants exert their damaging effects are the promotion of oxidative stress, the induction of an inflammatory response, and the deregulation of the immune system by reducing its ability to limit infectious agents’ spreading. This influence starts in the prenatal age and continues during childhood, the most susceptible period of life, due to a lower efficiency of oxidative damage detoxification, a higher metabolic and breathing rate, and enhanced oxygen consumption per unit of body mass. Air pollution is involved in acute disorders like asthma exacerbations and upper and lower respiratory infections, including bronchiolitis, tuberculosis, and pneumoniae. Pollutants can also contribute to the onset of chronic asthma, and they can lead to a deficit in lung function and growth, long-term respiratory damage, and eventually chronic respiratory illness. Air pollution abatement policies, are contributing to mitigating air quality issues, but more efforts should be encouraged to improve acute childhood respiratory disease with possible positive long-term effects on lung function. 
  • 222
  • 07 Jul 2023
Topic Review
Optimal Interpolation for infrared satellite data
Thermal infrared remote sensing measurements are blinded to surface emissions under cloudiness because infrared sensors cannot penetrate thick cloud layers. Therefore, surface and atmospheric parameters can be retrieved only in clear sky conditions giving origin to spatial fields flagged with missing pieces of information. Motivated by this we present a methodology to retrieve missing values of some interesting geophysical variables retrieved from spatially scattered infrared satellite observations in order to yield level 3 (L3), regularly gridded, data. The technique is based on a 2-Dimensional (2D) Optimal Interpolation (OI) scheme. The goodness of the approach has been tested on 15-min temporal resolution Spinning Enhanced Visible and Infrared Imager (SEVIRI) emissivity and surface temperature (ST) products over South Italy (land and sea), on Infrared Atmospheric Sounding Interferometer (IASI) atmospheric ammonia (NH3) concentration over North Italy and carbon monoxide (CO), sulfur dioxide (SO2) and NH3 concentrations over China. Sea surface temperature (SST) retrievals have been compared with gridded data from MODIS (Moderate-resolution Imaging Spectroradiometer) observations. For gases concentration, we have considered data from 3 different emission inventories, that is, Emissions Database for Global Atmospheric Research v3.4.2 (EDGARv3.4.2), the Regional Emission inventory in ASiav3.1 (REASv3.1) and MarcoPolov0.1, plus an independent study.
  • 696
  • 30 Oct 2020
Topic Review
NOx Emission Reduction and Recovery
Since its first confirmed case at the end of 2019, COVID-19 has become a global pandemic in three months with more than 1.4 million confirmed cases worldwide, as of early April 2020. Quantifying the changes of pollutant emissions due to COVID-19 and associated governmental control measures is crucial to understand its impacts on economy, air pollution, and society. We used the WRF-GC model and the tropospheric NO2 column observations retrieved by the TROPOMI instrument to derive the top-down NOx emission change estimation between the three periods: P1 (January 1st to January 22nd, 2020), P2 (January 23rd, Wuhan lockdown, to February 9th, 2020), and P3 (February 10th, back-to-work day, to March 12th, 2020). We found that NOx emissions in East China averaged during P2 decreased by 50% compared to those averaged during P1. The NOx emissions averaged during P3 increased by 26% compared to those during P2. Most provinces in East China gradually regained some of their NOx emissions after February 10, the official back-to-work day, but NOx emissions in most provinces have not yet to return to their previous levels in early January. NOx emissions in Wuhan, the first epicenter of COVID-19, had no sign of emission recovering by March 12. A few provinces, such as Zhejiang and Shanxi, have recovered fast, with their averaged NOx emissions during P3 almost back to pre-lockdown levels.
  • 891
  • 29 Oct 2020
  • Page
  • of
  • 11