Topic Review
"Zorbas" on Southeastern Sicily
Over the last few years, several authors have presented contrasting models to describe the response of boulders to extreme waves, but the absence of direct observation of movements has hindered the evaluation of these models. The recent development of online video-sharing platforms in coastal settings has provided the opportunity to monitor the evolution of rocky coastlines during storm events. In September 2018, a surveillance camera of the Marine Protected Area of Plemmirio recorded the movement of several boulders along the coast of Maddalena Peninsula (Siracusa, Southeastern Sicily) during the landfall of the Mediterranean tropical-like cyclone (Medicane) Zorbas. Unmanned autonomous vehicle (UAV) photogrammetric and terrestrial laser scanner (TLS) surveys were performed to reconstruct immersive virtual scenarios to geometrically analyze the boulder displacements recorded in the video. Analyses highlighted that the displacements occurred when the boulders were submerged as a result of the impact of multiple small waves rather than due to a single large wave. Comparison between flow velocities obtained by videos and calculated through relationships showed a strong overestimation of the models, suggesting that values of flow density and lift coefficient used in literature are underestimated.
  • 1.2K
  • 25 Aug 2021
Topic Review
“Dual Carbon” Target of Energy Structure Optimization
Exploring the path of energy structure optimization to reduce carbon emissions and achieve a carbon peak has important policy implications for achieving the “Dual Carbon” target.
  • 237
  • 20 Jul 2023
Topic Review
“Elephant-Equus” Event
The dispersal of primitive elephantines and monodactyl equids in Eurasia has long been regarded as representative of a substantial turnover in mammal faunas, denoting the spread of open environments linked to the onset of cold and dry conditions in the Northern Hemisphere. During the 1980s, this event was named the “Elephant-Equus event” and it was correlated with the Gauss-Matuyama reversal, today corresponding to the Pliocene-Pleistocene transition and the beginning of the Quaternary, dated at ~2.6 Ma. Therefore, the Elephant-Equus event became a concept of prominent biochronological and paleoecological significance, especially in western Europe. Yet, uncertainties surrounding the taxonomy and chronology of early “elephant” and “Equus”, as well as conceptual differences in adopting (or understanding) the Elephant-Equus event as an intercontinental dispersal event or as a stratigraphic datum, engendered ambiguity and debate.
  • 272
  • 01 Jun 2023
Topic Review
“Every Earthquake a Precursor According to Scale” Model
The observation that major earthquakes are generally preceded by an increase in the seismicity rate on a timescale from months to decades was embedded in the “Every Earthquake a Precursor According to Scale” (EEPAS) model. EEPAS has since been successfully applied to regional real-world and synthetic earthquake catalogues to forecast future earthquake occurrence rates with time horizons up to a few decades. When combined with aftershock models, its forecasting performance is improved for short time horizons. As a result, EEPAS has been included as the medium-term component in public earthquake forecasts in New Zealand. EEPAS has been modified to advance its forecasting performance despite data limitations. One modification is to compensate for missing precursory earthquakes. Precursory earthquakes can be missing because of the time-lag between the end of a catalogue and the time at which a forecast applies or the limited lead time from the start of the catalogue to a target earthquake. An observed space-time trade-off in precursory seismicity, which affects the EEPAS scaling parameters for area and time, also can be used to improve forecasting performance. Systematic analysis of EEPAS performance on synthetic catalogues suggests that regional variations in EEPAS parameters can be explained by regional variations in the long-term earthquake rate.
  • 506
  • 21 Oct 2022
Topic Review
 Aspergillus and Penicillium Species in Biodegradation of Pesticides
Since filamentous fungi of Penicillium and Aspergillus genera can colonize very diverse niches, and Ascomycota seems to be the dominant phylum within the microbial group in various contaminated substrates, they possess great potential in the remediation of pesticide-contaminated sites. Different species can remove the pesticides at different rates, and to various extents; however, the fungal ability to resist high concentrations of pesticides is almost unparalleled compared to other microbial groups. Their performance may be further improved by applying indigenous strains isolated from pesticide-contaminated soils and sediments. 
  • 159
  • 10 Jul 2023
Topic Review
Effect of Potassium on Tea Plant Growth
Potassium is among the three essential macronutrients for tea plants, along with nitrogen and phosphorous, and plays important roles in growth and stress response. Potassium is absorbed by plants in larger amounts than any other mineral element except nitrogen and, in some cases, calcium. Potassium is positively correlated with the elements nitrogen, copper, and zinc. Sufficient potassium dramatically improves the yield and quality of tea: it accelerates metabolism, promotes synthesis of catechins, and strengthens biotic and abiotic resistance by activating and regulating different enzymes. Moderate application of potassium fertilizers, along with potassium-solubilizing bacteria, can regulate the ratio of different forms of potassium and increase available potassium in soils of tea gardens.
  • 908
  • 06 Sep 2022
Topic Review
13C Solid-State NMR Application to Waste Composting
13C solid-state Nuclear Magnetic Resonance (SSNMR) has often been applied to follow the transformation of organic matter during waste composting to produce soil amendments, as well as to assess the quality of the products and the effectiveness of the treatment. 
  • 361
  • 27 Mar 2023
Topic Review
100,000-Year Problem
The 100,000-year problem ("100 ky problem", "100 ka problem") of the Milankovitch theory of orbital forcing refers to a discrepancy between the reconstructed geologic temperature record and the reconstructed amount of incoming solar radiation, or insolation over the past 800,000 years. Due to variations in the Earth's orbit, the amount of insolation varies with periods of around 21,000, 40,000, 100,000, and 400,000 years. Variations in the amount of incident solar energy drive changes in the climate of the Earth, and are recognised as a key factor in the timing of initiation and termination of glaciations. While there is a Milankovitch cycle in the range of 100,000 years, related to Earth's orbital eccentricity, its contribution to variation in insolation is much smaller than those of precession and obliquity. The 100,000-year-problem refers to the lack of an obvious explanation for the periodicity of ice ages at roughly 100,000 years for the past million years, but not before, when the dominant periodicity corresponded to 41,000 years. The unexplained transition between the two periodicity regimes is known as the Mid-Pleistocene Transition, dated to some 800,000 years ago. The related "400,000-year-problem" refers to the absence of a 400,000-year periodicity due to orbital eccentricity in the geological temperature record over the past 1.2 million years. The transition in periodicity from 41,000 years to 100,000 years can now be reproduced in numerical simulations that include a decreasing trend in carbon dioxide and glacially induced removal of regolith, as explained in more detail in the article Mid-Pleistocene Transition.
  • 673
  • 08 Oct 2022
Topic Review
100% Renewable Electricity in Indonesia
Researchers investigate an Indonesian energy decarbonization pathway using mostly solar photovoltaics. An hourly energy balance analysis using ten years of meteorological data was performed for a hypothetical solar-dominated Indonesian electricity system for the consumption of 3, 6 and 10 megawatt-hours (MWh) per capita per year (compared with current consumption of 1 MWh per capita per year). This research showed that Indonesia’s vast solar potential combined with its vast capacity for off-river pumped hydro energy storage could readily achieve 100% renewable electricity at low cost. The levelized cost of electricity (LCOE) for a balanced solar-dominated system in Indonesia was found to be in the range of 77–102 USD/MWh.
  • 282
  • 29 Jan 2024
Topic Review
100% Renewable Energy: Concepts and Progresses
Some advanced countries’ rapid population, economic growth, and energy consumption expansion contribute significantly to global CO2 emissions. And while developed countries have achieved 100% universal access to electricity, mainly from non-renewable sources, many developing countries still lack it. This presents challenges and opportunities for achieving the United Nations’ Sustainable Development Goals (SDGs) 7 and 13 of generating all energy from cleaner or low-carbon sources to reduce CO2 emissions in all countries and combating climate change consequences. Renewable energies have been widely acknowledged to greatly advance this endeavour, resulting in many studies and about 30 countries already with over 70% of their national electricity mix from RE. It has birthed a new paradigm and an emerging field of 100% RE for all purposes, receiving much attention from academia and in public discourse. 
  • 245
  • 20 Sep 2023
  • Page
  • of
  • 267