Topic Review
Measuring Urban Shrinkage
Most of the shrinking cities experience an unbalanced de-urbanization across different urban areas in cities. However, traditional ways of measuring urban shrinkage are focused on tracking population loss at the city level and are unable to capture the spatially heterogeneous shrinking patterns inside a city. Consequently, the spatial mechanism and patterns of urban shrinkage inside a city remain less understood, which is unhelpful for developing accommodation strategies for shrinkage. The smart city initiatives and practices have provided a rich pool of geospatial big data resources and technologies to tackle the complexity of urban systems. Given this context, we propose a new measure for the delineation of shrinking areas within cities by introducing a new concept of functional urban shrinkage, which aims to capture the mismatch between urban built-up areas and the areas where significantly intensive human activities take place. Taking advantage of a data fusion approach to integrating multi-source geospatial big data and survey data, a general analytical framework is developed to construct functional shrinkage measures. Combining geospatial big data with urban land-use functions obtained from land surveys and Points-Of-Interests data, the framework further enables the comparison between cities from dimensions characterized by indices of spatial and urban functional characteristics and the landscape fragmentation; thus, it has the capacity to facilitate an in-depth investigation of fundamental causes and internal mechanisms of urban shrinkage. 
  • 928
  • 05 Nov 2020
Topic Review
Jáchymov
Jáchymov (Czech pronunciation: [ˈjaːxɪmof]); German: Sankt Joachimsthal or Joachimsthal) is a spa town in Karlovy Vary District in the Karlovy Vary Region of the Czech Republic. It has about 2,300 inhabitants. The historical core of the town from the 16th century is well preserved and protected by law as urban monument zone. It is a comprehensive set of Gothic–Renaissance patrician houses. Jáchymov has a long mining tradition, thanks to which it used to be the second most populous town in the Kingdom of Bohemia in 1534. At first silver was mined here. The silver Joachimsthaler coins minted here since the 16th century gave their name to the Thaler and the dollar. After the Wieliczka Salt Mine ceased industrial exploitation in 2007, the Svornost mine (1525) became the oldest mine still in use in Europe. It is also the first and for a long time the only mine in the world, where radium was mined. The mining cultural landscape of Jáchymov is a UNESCO World Heritage Site as a part of the Ore Mountain Mining Region.
  • 928
  • 04 Nov 2022
Topic Review
Zinc Deficiency
Zinc deficiency is defined either as insufficient zinc to meet the needs of the body, or as a serum zinc level below the normal range. However, since a decrease in the serum concentration is only detectable after long-term or severe depletion, serum zinc is not a reliable biomarker for zinc status. Common symptoms include increased rates of diarrhea. Zinc deficiency affects the skin and gastrointestinal tract; brain and central nervous system, immune, skeletal, and reproductive systems. Zinc deficiency in humans is caused by reduced dietary intake, inadequate absorption, increased loss, or increased body system use. The most common cause is reduced dietary intake. In the U.S., the Recommended Dietary Allowance (RDA) is 8 mg/day for women and 11 mg/day for men. The highest concentration of dietary zinc is found in oysters, meat, beans, and nuts. Increasing the amount of zinc in the soil and thus in crops and animals is an effective preventive measure. Zinc deficiency may affect up to 2 billion people worldwide.
  • 927
  • 27 Oct 2022
Topic Review
Iron Silicides
Iron silicide minerals (Fe-Si group) are found in terrestrial and solar system samples. These minerals tend to be more common in extraterrestrial rocks such as meteorites, and their existence in terrestrial rocks is limited due to a requirement of extremely reducing conditions to promote their formation. Such extremely reducing conditions can be found in fulgurites, which are glasses formed as cloud-to-ground lightning heats and fuses sand, soil, or rock. 
  • 928
  • 19 Apr 2022
Topic Review
Fluorinated Greenhouse Gases
Fluorinated greenhouse gases (F-gases) are used for various applications, such as in refrigeration and air conditioning, as substitutes of the ozone-depleting substances. Their utilization has increased drastically over the last few decades, with serious consequences for global warming. The Kigali Amendment to the Montreal Protocol and several national and international legislations, such as the 2014 EU F-gas Regulation, aim to control the utilization and emissions of these gases. In the EU, the phase-down of hydrofluorocarbons (HFCs) is underway, with successive reductions in quotas up to 2050. Under this scenario, efficient strategies for managing the produced and already existing F-gases are of vital importance to guarantee that their effect on the environment is mitigated. Up to now, most of the F-gases recovered from end-of-life equipment or when retrofitting systems are either released into the atmosphere or destroyed. However, in order to put forward a cost-efficient adaptation to the F-gas phase-down, increasing separation and recycling efforts must be made.
  • 926
  • 24 May 2021
Topic Review
AOPs for Water Treatment
Advanced oxidation processes (AOPs) are water treatment processes that are promising for the degradation of persistent or toxic organic pollutants, as well as compounds refractory to other environmental remediation/decontamination treatments. AOPs have gained great importance as alternative treatment processes that affect the degradation of organic species through the action of the hydroxyl radical (OH), oxidizing pollutants present in wastewater and industrial effluents. AOPs are carried out at room temperature and at a pressure close to normal, which involve the formation of very reactive radical species with a high oxidizing capacity, mainly hydroxyl (OH) radicals. These OH radicals are extremely reactive oxidizers (oxidation potential of the OH radical is approximately, Eθ = 2.8 V) and non-selective towards organic pollutants in wastewater. AOPs can be considered versatile technologies, as they provide different possible alternatives to produce OH radicals. AOPs, compared to conventional water treatment techniques, have a greater efficiency and capacity to degrade recalcitrant organic pollutants, and can generate less toxic intermediate products during their degradation.
  • 925
  • 03 Sep 2021
Topic Review
Deep Eutectic Solvents as Promising Green Solvents
Deep eutectic solvents (DESs) have recently attracted attention as a promising green alternative to conventional hazardous solvents by virtue of their simple preparation, low cost, and biodegradability. Even though the application of DESs in analytical chemistry is still in its early stages, the number of publications on this topic is growing. Analytical procedures applying dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFOD) are among the more appealing approaches where DESs have been found to be applicable.
  • 925
  • 20 Jan 2022
Topic Review
Environmental Aspects of Potash Mining
Verkhnekamskoe potash deposit. The deposit is located in the central part of the Solikamsk depression in the Pre-Ural foredeep (Perm Krai, Russia). All the main features and problems of underground mining of water-soluble ores and potassium fertilizer production are considered using the example of one of the world’s largest potash deposits.
  • 925
  • 03 Apr 2023
Topic Review
Climate Change and Society
Society is at an important intersection in dealing with the challenges of climate change, while the natural sciences are insufficient to deal with these challenges. Critical aspects of sociological perspectives related to climate change research are brought together in this review in the hope of fostering greater interdisciplinary collaboration between the natural and social sciences.
  • 925
  • 22 Jan 2021
Topic Review
Zero Liquid Discharge System for the Tannery Industry
The tannery industry is characterized by the consumption of a large quantity of water, around 30–40 m3 for processing 1000 kg of hide or skin. This amount becomes wastewater, containing about 300 kg of different chemicals, mainly refractory organic compounds, with high chemical oxygen demand (COD), total dissolved salts (TDS), chromium, and evolution of toxic gases, such as ammonia and sulfides, etc. The remaining tanning chemicals are released as effluent having high resistance against biological degradation, becoming a serious environmental issue. The Zero Liquid Discharge (ZLD) system serves to ensure zero water emission, as well as treatment facilities by recycling, recovery, and reuse of the treated wastewater using advanced cleanup technology. The international scenario shows the implementation of ZLD thanks to pressure from regulatory agencies. The ZLD system consists of a pre-treatment system with conventional physicochemical treatment, tertiary treatment, softening of the treated effluent, reverse osmosis (RO) treatment for desalination, and thermal evaporation of the saline reject from RO to separate the salts. By adopting this system, water consumption is reduced. Moreover, ZLD also becomes effective in disaster mitigation in areas where the tannery industry is a strong economic actor. 
  • 925
  • 27 Jun 2022
  • Page
  • of
  • 271
Video Production Service