Topic Review
Biopolymers in Aerobic Granular Sludge
Aerobic granular sludge (AGS) technology has been extensively studied and is used in wastewater treatment plants to remove biodegradable organic matter and to overcome difficulties with conventional activated sludge systems. It has been successfully implemented in many full-scale plants in locations around the world. AGS technology, in which biomass has a form of compact and dense granules, offers advantages over conventional activated sludge such as a high settling capacity, more effective sludge-effluent separation, higher biomass retention, tolerance to high organic loads and toxicity, the possibility of simultaneously removing nutrients, and adsorption of heavy metals.
  • 519
  • 16 Nov 2021
Topic Review
Bioproducts from Solid-State Fermentation
Solid-state fermentation (SSF) is part of the pathway to consolidate waste as a relevant alternative for the valorization of organic waste. The objective of SSF is to produce one or several bioproducts of added value from solid substrates. Solid-state fermentation can use a wide variety of organic waste as substrates thus, it is an excellent candidate in the framework of the circular bioeconomy to change the status of waste from feedstock.
  • 683
  • 27 Dec 2022
Topic Review
Biorecovery of Critical Raw Materials through Archaeal factory
Bio-metallurgy is a promising alternative for e-waste valorisation based on biological routes of specialised microorganisms able to leach solid-containing metals. Because of the physiology of these microorganisms, microbial leaching can be economically feasible, besides being an environmentally sustainable process. Like Bacteria and Fungi, Archaea are also capable of metal leaching activity, though their potential is underestimated. Because of the physiology of these microorganisms, microbial leaching can be both economically and environmentally sustainable. Archaea, Bacteria and Fungi, are capable of metal leaching activity, although their potential is underappreciated.
  • 308
  • 04 May 2023
Topic Review
Biorefinery of Sewage Sludge
The disposal of excess biological sewage sludge from wastewater treatment is a growing environmental issue due to the vast quantities generated worldwide. Due to its composition, sewage sludge could be potentially exploited as a renewable carbon source, rather than being considered an inevitable “nuisance” linked to the main task of wastewater treatment. Biorefinery encompasses any technology used to process excess biological sewage sludge (EBSS) for biofuel and/or resource recovery: proper process integration can contribute to generating multiple possible final products (energy and/or materials).
  • 612
  • 10 Apr 2023
Topic Review
Bioremediation
Bioremediation can reduce pesticide contamination of agricultural soils by biodegradation processes via the metabolic activities of microorganisms. It is an efficient, cost-effective, and environment-friendly treatment.
  • 1.8K
  • 14 Jul 2021
Topic Review
Bioremediation of Petroleum Pollutants
The contamination of the soil, agricultural lands, and water bodies with petroleum wastes and other hydrocarbon pollutants has become a serious environmental concern as perceived by the impacts on the aquatic and marine ecosystem. Various investigations have provided novel insights into the significant roles of microbial activities in the cleanup of hydrocarbon contaminants. 
  • 301
  • 23 Apr 2023
Topic Review
Bioremediation Techniques
Bioremediation is a process that uses biological organisms to remove or re-treat an environmental pollutant through metabolic processes and plants to eradicate hazardous pollutants and restore the ecosystem to its original condition.
  • 3.2K
  • 24 Apr 2023
Topic Review
Bioretention Systems Optimization and Design Characterization Model
Urban stormwater has become a persistent concern on a global scale due to its adverse environmental implications. It is the prime vector of aquatic contaminants worldwide that causes pollutants when water bodies drain. Bioretention systems are increasingly used to alleviate setbacks associated with stormwater run-off in urban locales. It has played a substantial role in the implementation of low impact development (LID), a concept that addresses urban stormwater problems caused by land changes and development. The use of LID technologies is an innovative approach.
  • 450
  • 30 Jun 2022
Topic Review
Biosafety of Genome Editing Applications
In the European Union plants developed by novel genomic techniques for directed mutagenesis are have to undergo an Environmental Risk Assessment (ERA) prior to release or placing on the market. However, specific guidance for such an ERA is still lacking. In this review we discuss the limited suitability of general denominators of risk/safety to predict the risks associated with individual genome edited (GE) plants and argue that there is no safety by default for whole groups of GE applications encompassing different individual GE organisms. We suggest integrating the following two sets of considerations into the ERA to address particular characteristics of GE plants: considerations related to the traits developed by GE and considerations addressing the assessment of method-related unintended effects, e.g. due to off-target modifications. In conclusion, we recommend that further specific guidance for the ERA and monitoring should be developed to facilitate a focused assessment approach for GE plants. 
  • 431
  • 08 Jul 2021
Topic Review
Biosurfactants as Multifunctional Remediation Agents of Environmental Pollutants
Fuel and oil spills during the exploration, refining, and distribution of oil and petrochemicals are primarily responsible for the accumulation of organic pollutants in the environment. The reduction in contamination caused by hydrocarbons, heavy metals, oily effluents, and particulate matter generated by industrial activities and the efficient recovery of oil at great depths in an environmentally friendly way pose a challenge, as recovery and cleaning processes require the direct application of surface-active agents, detergents, degreasers, or solvents, often generating other environmental problems due to the toxicity and accumulation of these substances. Thus, the application of natural surface-active agents is an attractive solution. Due to their amphipathic structures, microbial surfactants solubilize oil through the formation of small aggregates (micelles) that disperse in water, with numerous applications in the petroleum industry. Biosurfactants have proven their usefulness in solubilizing oil trapped in rock, which is a prerequisite for enhanced oil recovery (EOR). Biosurfactants are also important biotechnological agents in anti-corrosion processes, preventing incrustations and the formation of biofilms on metallic surfaces, and are used in formulations of emulsifiers/demulsifiers, facilitate the transport of heavy oil through pipelines, and have other innovative applications in the oil industry. The use of natural surfactants can reduce the generation of pollutants from the use of synthetic detergents or chemical solvents without sacrificing economic gains for the oil industry.
  • 382
  • 15 Feb 2023
  • Page
  • of
  • 271
Video Production Service