Topic Review
Monochromatic X-rays
Monochromatic X-ray has a single energy level in contrast to white X-rays used in conventional radiation therapy. Irradiation of high Z elements such as gadolinium, gold and silver with a monochromatic X-ray can result in photoelectric effects that includes the release of the Auger electrons that have strong cell killing effect. To apply this principle to cancer therapy, various nanoparticles loaded with high Z elements have been developed that enabled high Z elements to be delivered to tumor. The recent addition is gadolinium-loaded mesoporous silica nanoparticle (Gd-MSN). Tumor spheroids have been used as a convenient tumor model to demonstrate that monochromatic X-rays with energy level at or higher than the K-edge energy of gadolinium can destruct tumor mass that has Gd-MSN distributed throughout tumor spheroids.
  • 9.7K
  • 22 Jul 2020
Topic Review
Photoplethysmography Sensors
The rapid advances in human-friendly and wearable photoplethysmography (PPG) sensors have facilitated the continuous and real-time monitoring of physiological conditions, enabling self-health care without being restricted by location. 
  • 7.7K
  • 27 Apr 2021
Topic Review
Generations of Glucose Biosensors
Electrochemical glucose biosensors are widely applied for glucose monitoring due to their unbeatable sensitivity, selectivity, and simplicity. In general, there are four primary generations of glucose biosensor, which are classified according to the electron transfer mechanism. Three generations represent the enzymatic glucose biosensor, and one generation represents the non-enzymatic glucose biosensor.
  • 6.7K
  • 14 Dec 2022
Topic Review Peer Reviewed
Challenges for Nanotechnology
The term “Nanotechnology” describes a large field of scientific and technical activities dealing with objects and technical components with small dimensions. Typically, bodies that are in–at least–two dimensions smaller than 0.1 µm are regarded as “nanobjects”. By this definition, a lot of advanced materials, as well as the advanced electronic devices, are objects of nanotechnology. In addition, many aspects of molecular biotechnology as well as macromolecular and supermolecular chemistry and nanoparticle techniques are summarized under “nanotechnology”. Despite this size-oriented definition, nanotechnology is dealing with physics and chemistry as well as with the realization of technical functions in the area between very small bodies and single particles and molecules. This includes the shift from classical physics into the quantum world of small molecules and low numbers or single elementary particles. Besides the already established fields of nanotechnology, there is a big expectation about technical progress and solution to essential economic, medical, and ecological problems by means of nanotechnology. Nanotechnology can only meet these expectations if fundamental progress behind the recent state of the art can be achieved. Therefore, very important challenges for nanotechnology are discussed here.
  • 6.1K
  • 13 Apr 2022
Topic Review
Metallic Alloy Nanoparticles
Metallic alloy nanoparticles are synthesized by combining two or more different metals. Bimetallic or trimetallic nanoparticles are considered more effective than monometallic nanoparticles because of their synergistic characteristics. In this review, we outline the structure, synthesis method, properties, and biological applications of metallic alloy nanoparticles based on their plasmonic, catalytic, and magnetic characteristics.
  • 5.5K
  • 03 Aug 2020
Topic Review
Polyethylene Glycol
Lately, polyethylene glycol with nanoparticles has been demarcated as an innovative class of phase change materials with conceivable uses in the area of convective heat transfer. The amplified thermal conductivity of these nanoparticle enhanced phase change materials (PCMs) over the basic fluids (e.g., polyethylene glycol—PEG) is considered one of the driving factors for their improved performance in heat transfer.
  • 5.2K
  • 08 Jan 2021
Topic Review
Lotus-Leaf-Inspired Biomimetic Coatings
A universal infrastructural issue is wetting of surfaces; millions of dollars are invested annually for rehabilitation and maintenance of infrastructures including roadways and buildings to fix the damages caused by moisture and frost. The biomimicry of the lotus leaf can provide superhydrophobic surfaces that can repel water droplets, thus reducing the penetration of moisture, which is linked with many deterioration mechanisms in infrastructures, such as steel corrosion, sulfate attack, alkali-aggregate reactions, and freezing and thawing. In cold-region countries, the extent of frost damage due to freezing of moisture in many components of infrastructures will be decreased significantly if water penetration can be minimized. Consequently, it will greatly reduce the maintenance and rehabilitation costs of infrastructures.
  • 5.2K
  • 11 Jun 2022
Topic Review
Metallic Nanowires
The fundamental properties of a material can dramatically change when its dimensions are reduced nanometer scale. Metallic nanowires are one-dimensional nanostructures with diameters that are typically in a range of 10-200 nm, and lengths in a range of 5-100 µm. Metallic nanowires have many unique properties that are not seen in their bulk counterparts, such as good thermal and electrical conductivity, high aspect ratio, low sheet resistance, excellent optical transparency, etc. In the past two decades, research into metallic nanowires has encouraged breakthrough technologies in a variety of fields, including flexible transparent conductive films and electrodes, optoelectronic devices, molecular electronics, solar cells,  touch screens, biomedical science, chemical sensors, heat transfer enhancement, etc.
  • 5.1K
  • 29 Oct 2020
Topic Review
Fly Ash
Fly ash or coal fly ash causes major global pollution in the form of solid waste and is classified as a “hazardous waste”, which is a by-product of thermal power plants produced during electricity production. Si, Al, Fe Ca, and Mg alone form more than 85% of the chemical compounds and glasses of most fly ashes. Fly ash has a chemical composition of 70–90%, as well as glasses of ferrous, alumina, silica, and CaO. Therefore, fly ash could act as a reliable and alternative source for ferrous, alumina, and silica. The ferrous fractions can be recovered by a simple magnetic separation method, while alumina and silica can be extracted by chemical or biological approaches. Alumina extraction is possible using both alkali- and acid-based methods, while silica is extracted by strong alkali, such as NaOH. Chemical extraction has a higher yield than the biological approaches, but the bio-based approaches are more environmentally friendly. Fly ash can also be used for the synthesis of zeolites by NaOH treatment of variable types, as fly ash is rich in alumino-silicates. The present review work deals with the recent advances in the field of the recovery and synthesis of ferrous, alumina, and silica micro and nanoparticles from fly ash.
  • 5.1K
  • 06 Apr 2021
Topic Review
Nanolubricants
Nanolubricants are the name given to the dispersion of nanoparticles in a base oil, and has attracted researchers due to its potential application. In addition to being used in the tribology field, nanoparticles are also used for medical, space, and composites purposes. The addition of nanoparticles in base oils is promising because it enhances specific tribological characteristics including wear-resistance and friction, and the most important reason is that the majority of them are environmentally friendly. 
  • 4.7K
  • 17 Nov 2020
Topic Review
Toxicity of Titanium Compounds
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. We have reported the state of knowledge about toxicity of titanium, its alloys and oxides. Due to the alarming increase in titania/titanium applications in various daily care products and medical treatment (e.g. dental implants) the possible toxicity and environmental impact should be considered.  The collected data might allow to identify some harms associated with using of titania and titanium compounds.
  • 4.7K
  • 21 Feb 2021
Topic Review
Palm Oil Mill Effluent (POME)
Disposal of palm oil mill effluent (POME), which is highly polluting from the palm oil industry, needs to be handled properly to minimize the harmful impact on the surrounding environment.
  • 4.5K
  • 01 Nov 2021
Topic Review
Transparent Conducting Oxides
A Transparent Conducting Oxides (TCO) is a wide band-gap semiconductor that has high concentration of free electrons in its conduction band.
  • 4.4K
  • 31 Mar 2021
Topic Review
Electrospinning
Relative to many other nanofiber formation techniques, the electrospinning technique exhibits superior nanofiber formation when considering cost and manufacturing complexity for many situations. Aligned electrospun nanofibers have applications in nanocomposite structures and energy storage devices in addition to applications like air filtration, desalination, tissue engineering, textiles etc. The  specific strength and dielectric constant are important to understand mechanical and dielectric properties of electrospun fibers and tailor these properties in the field of composite and energy applications. 
  • 4.4K
  • 20 Jan 2021
Topic Review
Nanocarriers
Nanocarriers are added as colloidal nanosystems loaded with therapeutic agents (anticancer agents or any macromolecules, such as proteins or genes), which allow drugs to selectively accumulate at the site of cancerous tumors. As a result of their unique nanometer range, 1–1000 nm (drug administration is preferable in the 5–200 nm range), they are used for cancer treatment. The main and most promising nanocarriers in the literature are iron oxide, gold, polymers, liposomes, micelles, fullerenes (carbon nanotubes, graphene), dendrimers, quantum dots, and nanodiamonds.
  • 4.4K
  • 06 Aug 2021
Topic Review
Nanotechnology in Warfare
Nanotechnology in Warfare is a branch of nano-science in which molecular systems are designed, produced and created to fit a nano-scale (1-100nm). The application of such technology, specifically in the area of warfare and defence, has paved the way for future research in the context of weaponisation. Nanotechnology unites a variety of scientific fields including material science, chemistry, physics, biology and engineering. Advancements in this area, have led to categorised development of such nano-weapons with classifications varying from; small robotic machines, hyper-reactive explosives, and electromagnetic super-materials. With this technological growth, has emerged implications of associated risks and repercussions, as well as regulation to combat these effects. These impacts give rise to issues concerning global security, safety of society, and the environment. Legislation may need to be constantly monitored to keep up with the dynamic growth and development of nano-science, due to the potential benefits or dangers of its use. Anticipation of such impacts through regulation, would 'prevent irreversible damages' of implementing defence related nanotechnology in warfare.
  • 4.2K
  • 02 Nov 2022
Topic Review
Nanocellulose
Nanocellulose can be used to improve the mechanical properties of cementitious materials if a proper dosage is used. Nanocellulose can be used as a type of viscosity-modifying agent (VMA) in cementitious materials. Nanocellulose with a proper dosage can reduce the shrinkage of cementitious materials, especially with a low water-to-cement (w/c) ratio. Four types of nanocelluloses, including cellulose nanocrystal, cellulose nanofibril, bacterial cellulose, and cellulose filament, have been used in cementitious materials.
  • 4.2K
  • 25 Dec 2020
Topic Review
Nanozymes
Nanozymes are advanced nanomaterials which possess unique physicochemical properties with the precise structural fabrication capability to mimic intrinsic biologically relevant reactions.
  • 4.2K
  • 19 Jan 2021
Topic Review
Full-Color Realization of Micro-LED Displays
Emerging technologies, such as smart wearable devices, augmented reality (AR)/virtual reality (VR) displays, and naked-eye 3D projection, have gradually entered our lives, accompanied by an urgent market demand for high-end display technologies. Ultra-high-resolution displays, flexible displays, and transparent displays are all important types of future display technology, and traditional display technology cannot meet the relevant requirements. Micro-light-emitting diodes (micro-LEDs), which have the advantages of a high contrast, a short response time, a wide color gamut, low power consumption, and a long life, are expected to replace traditional liquid-crystal displays (LCD) and organic light-emitting diodes (OLED) screens and become the leaders in the next generation of display technology. However, there are two major obstacles to moving micro-LEDs from the laboratory to the commercial market. One is improving the yield rate and reducing the cost of the mass transfer of micro-LEDs, and the other is realizing a full-color display using micro-LED chips. This study will outline the three main methods for applying current micro-LED full-color displays, red, green, and blue (RGB) three-color micro-LED transfer technology, color conversion technology, and single-chip multi-color growth technology, to summarize present-day micro-LED full-color display technologies and help guide the follow-up research.
  • 4.0K
  • 22 Dec 2020
Topic Review
Carbon Dots: Synthesis and Properties
Carbon dots (CDs) are zero-dimensional optically active carbon-based nanomaterials with a size of less than 10 nm. The material property of the CD is largely linked to the various bottom-up & top-down synthesis approaches, including surface passivation and functionalization, and the carbon precursors. The CDs can be engineered to enhance the chemical and physical functional properties by doping with heteroatom such as nitrogen, phosphorus, sulfur, fluorine, and boron. Because of its various advantageous properties, CDs are utilized in the field of chemical/biological sensing, bioimaging, and drug delivery. These nanosized CDs can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD’s remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. 
  • 4.0K
  • 16 Mar 2021
  • Page
  • of
  • 42
ScholarVision Creations