Topic Review
Fischer–Tropsch Synthesis for Light Olefins
Light olefins as one the most important building blocks in chemical industry can be produced via Fischer–Tropsch synthesis (FTS) from syngas. FT synthesis conducted at high temperature would lead to light paraffins, carbon dioxide, methane, and C5+ longer chain hydrocarbons. The present work focuses on providing a critical review on the light olefin production using Fischer–Tropsch synthesis.
  • 845
  • 07 Aug 2021
Topic Review
Ionic-Liquid-Based Materials for Protein-related Applications
Supported ionic liquids (SILs) have been investigated as alternative supports for enzymes in biocatalysis and as new supports in preparative liquid chromatography for the purification of high-value proteins and enzymes. SILs are materials in which ionic liquids are introduced to modify the surface and properties of materials, e.g. as ligands covalently bond or physiosorbed.
  • 844
  • 23 Nov 2021
Topic Review
Insight on Mercapto-Coumarins
Mercapto (or sulfanyl)-coumarins are heterocycles of great interest in the development of valuable active structures in material and biological domains. They represent a highly exploitable class of compounds that open many possibilities for further chemical transformations.
  • 831
  • 07 Apr 2022
Topic Review
Non-Titania Based Semiconductor Hetero-Nanoarchitectures
Plasmonic photocatalysts combining metallic nanoparticles and semiconductors have been aimed as versatile alternatives to drive light-assisted catalytic chemical reactions beyond the ultraviolet (UV) regions, and overcome one of the major drawbacks of the most exploited photocatalysts (TiO2 or ZnO). The strong size and morphology dependence of metallic nanostructures to tune their visible to near-infrared (vis-NIR) light harvesting capabilities has been combined with the design of a wide variety of architectures for the semiconductor supports to promote the selective activity of specific crystallographic facets. The search for efficient heterojunctions has been subjected to numerous studies, especially those involving gold nanostructures and titania semiconductors. In the present review, we paid special attention to the most recent advances in the design of gold-semiconductor hetero-nanostructures including emerging metal oxides such as cerium oxide or copper oxide (CeO2 or Cu2O) or metal chalcogenides such as copper sulfide or cadmium sulfides (CuS or CdS). These alternative hybrid materials were thoroughly built in past years to target research fields of strong impact, such as solar energy conversion, water splitting, environmental chemistry, or nanomedicine.
  • 830
  • 15 Apr 2021
Topic Review
Natural and Semi-Synthetic Compounds for Wound Healing
Skin wounds are injuries that compromise or damage the structural integrity and optimal functioning of the skin and can be grouped into acute and chronic depending on the skin repair and recovery time frame. Specific interest is given to Aloevera, curcumin, cinnamaldehyde, polyhexanide, retinoids, ascorbate, tocochromanols, and chitosan. These compounds (when alone or in formulation with other biologically active molecules) could be a dependable alternative in the management or prevention of chronic wounds.
  • 828
  • 27 Jun 2022
Topic Review
Current Challenges and Perspectives for Biomass Catalytic Pyrolysis
Lignocellulosic biomass is an excellent alternative of fossil source owing to the fact that it is low-cost, plentiful and environmentally friendly. Through pyrolysis, lignocellulosic biomass can be converted into the potential precusor of liquid fuel or platform chemicals. Therefore, the detailed knowledge and mechanism about biomass conversion should be overviewed and concluded. We have reviewed several factors which impact the conversion of biomass, including the properties of biomass, operational parameters of catalytic pyrolysis and different types of pyrolysis equipment. Meantime, some perspectives for future development have been proposed in the end.
  • 826
  • 13 Dec 2022
Topic Review
Flash-Boiling Atomization
Flash-boiling atomization is a method by which a liquid is brought into a superheated state, such as vigorous boiling, in a short timeframe while the bubbles grow considerably fast. This leads to the disintegration of the continuous liquid into tiny droplets. Flash-boiling, effervescent, and air-assisted atomization are based on a two-phase flow to achieve effective atomization. 
  • 819
  • 07 Oct 2023
Topic Review
Adsorption Effect Modification of Lithium–Sulfur Batteries
Lithium–sulfur batteries (LSBs) have high theoretical specific capacity (1675 mAh g−1) and high energy density (2600 Wh kg−1), and the cathode sulfur is low cost, abundant, and environmentally friendly. The “shuttle effect” refers to the phenomenon that Li2Sx (4 ≤ x ≤ 8) produced by the positive electrode diffuses to the negative electrode during the charging and discharging process, and is reduced to solid Li2S2/Li2S on the negative electrode surface and attached to the negative electrode.
  • 817
  • 30 Aug 2022
Topic Review
Seaweeds Compounds
Seaweeds’ compounds present important qualities for cosmetic application, such as low cytotoxicity and low allergens content. Several seaweeds’ molecules already demonstrated a high potential as a cosmetic active ingredient (such as, mycosporine-like amino acids, fucoidan, pigments, phenolic compounds) or as a key element for the products consistency (agar, alginate, carrageenan). Moreover, it focuses on the ecological and sustainable scope of seaweed exploitation to guarantee a safe source of ingredients for the cosmetic industry and consumers.
  • 816
  • 17 Jan 2022
Topic Review
Ambient Mass Spectrometry Imaging and Its Applications
Ambient mass spectrometry imaging (AMSI) has attracted much attention in recent years. As a kind of unlabeled molecular imaging technique, AMSI can enable in situ visualization of a large number of compounds in biological tissue sections in ambient conditions. In this review, the developments of various AMSI techniques are discussed according to one-step and two-step ionization strategies. In addition, recent applications of AMSI for lipid and metabolite analysis (from 2016 to 2021) in disease diagnosis, animal model research, plant science, drug metabolism and toxicology research, etc., are summarized. Finally, further perspectives of AMSI in spatial resolution, sensitivity, quantitative ability, convenience and software development are proposed. 
  • 815
  • 29 Mar 2022
Topic Review
Ni-Based Bimetallic Catalysts
Metallic Ni shows high activity for a variety of hydrogenation reactions due to its intrinsically high capability for H2 activation, but it suffers from low chemoselectivity for target products when two or more reactive functional groups are present on one molecule. Modification by other metals changes the geometric and electronic structures of the monometallic Ni catalyst, providing an opportunity to design Ni-based bimetallic catalysts with improved activity, chemoselectivity, and durability.
  • 815
  • 07 Feb 2022
Topic Review
Biohydrogen for Sustainable Energy Solutions
Energy plays a crucial role in the sustainable development of modern nations. Hydrogen is considered the most promising alternative fuel as it can be generated from clean and green sources. Moreover, it is an efficient energy carrier because hydrogen burning only generates water as a byproduct. It is generated from natural gas. However, it can be produced using other methods, i.e., physicochemical, thermal, and biological. The biological method is considered more environmentally friendly and pollution free.
  • 796
  • 03 Nov 2022
Topic Review
2D Nanomaterials for Optical Limiting
Due to the outstanding physical, chemical, electronic, and optical properties, ultra-thin 2D materials can be potentially utilized in a wide spectrum of applications, including catalysis, energy storage, sensors, biomedicine and electronics/optoelectronics, etc. 
  • 793
  • 18 Nov 2021
Topic Review
Sustainable Valorisation of Agri-Food Wastes
In the upcoming years, the world will face societal challenges arising, in particular, from the impact of climate change and the inefficient use of natural resources, in addition to an exponential growth of the world population, which according to the United Nations (UN) estimations will be 9.8 billion in 2050. This increasing trend requires optimized management of natural resources with the use of value-added waste and a significant reduction in food loss and food waste. Moreover, the recent pandemic situation, COVID-19, has contributed indisputably. Along with the agri-food supply chain, several amounts of waste or by-products are generated.
  • 788
  • 28 Dec 2022
Topic Review
Pesticides Removal Using Metal Oxide and Their Composites
Persistent organic chemicals (POPs) are highly hazardous to the ecosystem and living organisms. Their non-biodegradability allows them to accumulate easily in the food chain, affecting both humans and wildlife. Pesticides are one class of POPs with half-lives that can extend to years. They have been used abundantly to control the growth of the crops by exterminating pests including insects, fungi, and microorganisms in agricultural farms.
  • 784
  • 12 May 2023
Topic Review
Activation Persulfate by Various Iron-Based Catalysts
Advanced oxidation technology of persulfate is a new method to degrade wastewater. As the economy progresses and technology develops, increasingly more pollutants produced by the paper industry, printing and dyeing, and the chemical industry are discharged into water, causing irreversible damage to water. Methods and research directions of activation persulfate for wastewater degradation by a variety of iron-based catalysts are reviewed. This entry describes the merits and demerits of advanced oxidation techniques for activated persulfate by iron-based catalysts. In order to promote the development of related research work, the problems existing in the current application are analyzed.
  • 777
  • 24 Jan 2022
Topic Review
Plant-Derived Metal Nanoparticles
Plant-derived metal nanoparticles (PDMNPs) have gained considerable interest because of their tremendous and remarkable potential as therapeutic agents as well as development of less expensive, safer, and easier biomedical equipment. PDMNPs are synthesized from metal salts or oxides by using plant extracts because plants have diversified bioactive compounds that can act as reducing and stabilizing agents at the time of nanoparticle synthesis. Besides, PDMNPs take advantages over the nanoparticles synthesized by other methods because of their low cost, environmental friendliness, and sustainability. 
  • 773
  • 23 Mar 2023
Topic Review
Hydrogels Combined with Silver Nanoparticles against Antimicrobial Resistance
The development of multidrug-resistant (MDR) microorganisms has increased dramatically as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. In this sense, metallic nanoparticles (such as silver nanoparticles) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the nanoparticles (NPs) is also a matter of concern, and studies have demonstrated that hydrogels present an excellent ability to perform this task.
  • 770
  • 03 Feb 2023
Topic Review
Agave By-Products
Throughout this review, we have highlighted the current potential of agave by-products as low-cost and natural materials with several applications as biofuels, materials for nanocomposites, and functional ingredients. Among the methods used for by-products processing, US and microwaves are promising and eco-friendly methods for the efficient saccharification and increased digestibility of agave, that can eventually replace chemical processing, reducing waste generation. In this regard, future studies are required concerning accessible, low-cost, and more efficient technologies as a more attractive way for the industry to make a sustainable utilization of this by-product.
  • 761
  • 08 Oct 2021
Topic Review
High-Pressure Mechanistic, Bioinorganic NO Chemistry
Nitric oxide (NO) is a short-living free radical, and, in contrast to many signaling agents (e.g., various peptides), which rely on receptors where structural relationships determine their function, the chemistry of NO determines its biological roles. There are two distinct reaction types—direct and indirect—which depend on the NO concentration, reactive species formed and reaction kinetics. The direct effects involve interactions of NO itself with biological targets such as redox metal centers, redox-active amino acids, or other radical species.
  • 750
  • 08 Nov 2021
  • Page
  • of
  • 15
ScholarVision Creations