Topic Review
Membrane Shielding Materials for Electromagnetic/Radiation Contamination
As technology develops at a rapid pace, electromagnetic and radiation pollution have become significant issues. These forms of pollution can cause many important environmental issues. If they are not properly managed and addressed, they will be everywhere in the global biosphere, and they will have devastating impacts on human health. In addition to minimizing sources of electromagnetic radiation, the development of lightweight composite shielding materials to address interference from radiation has become an important area of research. A suitable shielding material can effectively reduce the harm caused by electromagnetic interference/radiation.
  • 736
  • 22 Mar 2023
Topic Review
Band Gap Engineering
Crystalline TiO2 (as rutile, anatase or brookite) can absorb only about 4% of the solar energy due to its large band gap in the range of 3.0–3.2 eV. As a consequence, the true incident photon conversion yield of most sun-light and semiconductor-assisted photoreactions is low. The aim of exploiting visible light can be achieved by applying various techniques such as doping or modification with metals and non-metals, coupling of semiconductors, or dye sensitization. Since only the former technique seems to allow cost-efficient and robust synthesis routes for realistic applications of titania coatings, this chapter will concentrate on metal and non-metal doping.
  • 735
  • 19 Oct 2022
Topic Review
Functional Materials for Wastewater Treatment
Functional materials play a central role in the advancement of these technologies due to their highly tunable properties and functions. 
  • 731
  • 27 Apr 2022
Topic Review
Principle of Hydrophobicity
Hydrophobic thin films have attracted significant attention in both basic research and practical applications due to their unique properties. These thin films have undergone extensive study, and numerous efforts have been made to broaden their application fields to include areas such as oil hydrophobicity, hydrophobic anti-icing, and hydrophobic anti-corrosion. Additionally, fresh studies that explore approximate theories and fabrication techniques for hydrophobic thin films have emerged.
  • 730
  • 25 May 2023
Topic Review
Polymer Composites Carbonaceous Materials Coated
Carbon fibre reinforced polymer composites have high mechanical properties that make them exemplary engineered materials to carry loads and stresses. Coupling fibre and matrix together require good understanding of not only fibre morphology but also matrix rheology. One way of having a strongly coupled fibre and matrix interface is to size the reinforcing fibres by means of micro- or nanocarbon materials coating on the fibre surface. Common coating materials used are carbon nanotubes and nanofibres and graphene, and more recently carbon black (colloidal particles of virtually pure elemental carbon) and graphite. There are several chemical, thermal, and electrochemical processes that are used for coating the carbonous materials onto a carbon fibre surface. Sizing of fibres provides higher interfacial adhesion between fibre and matrix and allows better fibre wetting by the surrounded matrix material.
  • 727
  • 08 Oct 2021
Topic Review
Laser Cladding Alloying and Composite of Steel Materials
Laser cladding technology is a reliable and efficient surface modification technology, which has been widely used in surface alloying and composite processing of steel materials. Laser cladding alloying and compounding can enhance the wear resistance and corrosion resistance of steel materials.
  • 722
  • 09 Dec 2022
Topic Review
Graphene Oxide Thin Films with Drug Delivery Function
Graphene oxide has been used in different fields of nanomedicine as a manager of drug delivery due to its inherent physical and chemical properties that allow its use in thin films with biomedical applications. Several studies demonstrated its efficacy in the control of the amount and the timely delivery of drugs when it is incorporated in multilayer films. It has been demonstrated that graphene oxide layers incorporated in drug delivery systems are able to work either as a nanocarrier, transporting the drugs to their targets or as a barrier delaying the release of drugs to accommodate the treatment schedules. This allows for the development of structured ,sophisticated and time-controlled systems.
  • 705
  • 22 Apr 2022
Topic Review
Natural and Modified Cyclodextrins as Packaging Additives
Cyclodextrins (CDs) have been used by the pharmaceutical and food industries since the 1970s. Their cavities allow the accommodation of several hydrophobic molecules, leading to the formation of inclusion complexes (ICs) increasing the guest molecules’ stability, allowing their controlled release, enhancing their water solubility and biodisponibility.
  • 701
  • 18 Nov 2021
Topic Review
Perovskite Solar Cells with ZnO Electron Transport Layer
Perovskite solar cells (PSCs) have experienced rapid development in the past period of time, and a record efficiency of up to 25.7% has been yielded. The PSCs with the planar structure are the most prevailing, which not only can significantly simplify the device fabrication process but also reduce the processing temperature. Particularly, the electron transport layer (ETL) plays a critical role in boosting the device performance of planar PSCs. ZnO is a promising candidate as the ETL owing to its high transparency, suitable energy band structure, and high electron mobility. Moreover, ZnO is easy to be processed at a low cost and low energy. 
  • 701
  • 05 Jan 2023
Topic Review
Annealing Methods in the Growth of Perovskite Grains
Perovskite solar cells (PSCs) are a promising and fast-growing type of photovoltaic cell due to their low cost and high conversion efficiency. The high efficiency of PSCs is closely related to the quality of the photosensitive layer, and the high-quality light absorbing layer depends on the growth condition of the crystals. In the formation of high-quality crystals, annealing is an indispensable and crucial part, which serves to evaporate the solvent and drive the crystallization of the film. Various annealing methods have different effects on the promotion of the film growth process owing to the way they work.
  • 693
  • 08 Jul 2022
Topic Review
Fabrication of SiC Membranes
The scale of research for developing and applying silicon carbide (SiC) membranes for gas separation has rapidly expanded over the last few decades. The precursor-derived ceramic approaches for preparing SiC membranes include chemical vapor deposition (CVD)/chemical vapor infiltration (CVI) deposition and pyrolysis of polymeric precursor. Generally, SiC membranes formed using the CVD/CVI deposition route have dense structures, making such membranes suitable for small-molecule gas separation. On the contrary, pyrolysis of a polymeric precursor is the most common and promising route for preparing SiC membranes, which includes the steps of precursor selection, coating/shaping, curing for cross-linking, and pyrolysis. Among these steps, the precursor, curing method, and pyrolysis temperature significantly impact the final microstructures and separation performance of membranes.
  • 689
  • 19 Feb 2023
Topic Review
Presentation of Film Deposition Method
The functional layer is an important part of the storage mechanism in lithium-ion batteries, as it helps to improve the performance and stability of the interface and allows for the efficient transfer of ions and electrons. The film deposition techniques are vital for the development of lithium-ion batteries by providing a functional layer at the interface between electrode and electrolyte, which fabricates a solid-state battery with a different approach from the traditional methods.
  • 688
  • 07 Mar 2023
Topic Review
Techniques for Synthesizing Metal Oxides
Supercapacitors (SCs) have attracted attention as an important energy source for various applications owing to their high power outputs and outstanding energy densities. The electrochemical performance of an SC device is predominantly determined by electrode materials, and thus, the selection and synthesis of the materials are crucial.
  • 677
  • 17 Jun 2022
Topic Review
Electroplated Nanotwinned Copper in Microelectronic Packaging
Copper is the most common interconnecting material in the field of microelectronic packaging, which is widely used in advanced electronic packaging technologies. However, with the trend of the miniaturization of electronic devices, the dimensions of interconnectors have decreased from hundreds of microns to tens of or even several microns, which has brought serious reliability issues. As a result, nanotwinned copper (nt-Cu) has been proposed as a potential candidate material and is being certified progressively.
  • 663
  • 17 Aug 2023
Topic Review
Sputtering of LiCoO2 Thin Films
Lithium cobalt oxide (LCO) cathode has been widely applied in 3C products (computer, communication, and consumer), and LCO films are the most promising cathode materials for thin-film lithium batteries (TFBs) due to their high volumetric energy density and favorable durability. Magnetron sputtering deposition technology realizes the merits of high speed, low temperature, and low toxicity. The magnetron sputtering technology perfectly fits the microelectronics, micro-memory, and other micro-devices in the field of low energy demand, and has even gradually been expanded to flexible devices and implantable medical devices. Therefore, magnetron sputtering has become the most common method for making LCO thin-film electrodes. 
  • 663
  • 08 Dec 2022
Topic Review
Laser Cladding Coatings on Magnesium Alloys
The surface properties of magnesium alloys can be improved by Laser Cladding in order to increase wear and corrosion resistance manteining the lower density of these alloys. This can make magnesium alloys a promising structural material to be used as a substitute for metals traditionally used in the automotive and aircraft sector. 
  • 656
  • 28 Mar 2022
Topic Review
Nano-, Micro- and Macro-Scale Impact Tests
Impact resistance is critical in many applications of coating systems involving highly loaded mechanical contact. Nano-impact testing utilises the depth-sensing capability of a multifunctional nanomechanical test system (NanoTest system, Micro Materials Ltd., Wrexham, UK) to perform impact testing at strain rates that are several orders of magnitude higher than those in quasi-static indentation tests.
  • 649
  • 21 Jun 2022
Topic Review
Application of Polysaccharides in Biodegradable Films
Biodegradable films emerge as alternative biomaterials to conventional packaging from fossil sources, which, in addition to offering protection and increasing the shelf life of food products, are ecologically sustainable. The materials mostly used in their formulation are based on natural polysaccharides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants). The formulation of biodegradable films from polysaccharides and various plasticizers represents an alternative for primary packaging that can be assigned to specific food products, which opens the possibility of having multiple options of biodegradable films for the same product.
  • 649
  • 08 Jul 2022
Topic Review
Polyurea in Impact Penetration Resistance and Blast Mitigation
Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. 
  • 633
  • 11 Mar 2024
Topic Review
Combinatorial Laser Technologies
Modification of metallic implants with biocompatible coatings is usually required to avoid premature loosening of prosthesis. Specific to the bone implant tissue, coatings with specific characteristics are proposed in order to provide optimal osseointegration. Pulsed laser deposition (PLD) became a well-known physical vapor deposition technology that has been successfully applied to a large variety of biocompatible inorganic coatings for biomedical prosthetic applications. Matrix assisted pulsed laser evaporation (MAPLE) is a PLD-derived technology used for depositions of thin organic material coatings. In an attempt to surpass solvent related difficulties, when different solvents are used for blending various organic materials, combinatorial MAPLE was proposed to grow thin hybrid coatings, assembled in a gradient of composition. Thus, by applying combined laser technologies one may develop composite coatings with biomimetic features able to modulate cellular behaviour for tissue engineering or cancer research applications.
  • 629
  • 29 Oct 2020
  • Page
  • of
  • 12
ScholarVision Creations