You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
ICIs for HCC treatment
Immunotherapies are promising approaches for treating hepatocellular carcinomas (HCCs) refractory to conventional therapies. However, a recent clinical trial of immune checkpoint inhibitors (ICIs) revealed that anti-tumor responses to ICIs are not satisfactory in HCC cases. Therefore, it is critical to identify molecular markers to predict outcome and develop novel combination therapies that enhance the efficacy of ICIs. Recently, several attempts have been made to classify HCC based on genome, epigenome, and transcriptome analyses. These molecular classifications are characterized by unique clinical and histological features of HCC, as well immune phenotype. For example, HCCs exhibiting gene expression patterns with proliferation signals and stem cell markers are associated with the enrichment of immune infiltrates in tumors, suggesting immune-proficient characteristics for this type of HCC. However, the presence of activating mutations in β-catenin represents a lack of immune infiltrates and refractoriness to ICIs. Although the precise mechanism that links the immunological phenotype with molecular features remains controversial, it is conceivable that alterations of oncogenic cellular signaling in cancer may lead to the expression of immune-regulatory molecules and result in the acquisition of specific immunological microenvironments for each case of HCC. Therefore, these molecular and immune characteristics should be considered for the management of HCC using immunotherapy.
  • 1.0K
  • 02 Nov 2020
Topic Review
Chemotherapy-Induced Neuropathic Pain
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of chemotherapics such as taxanes, vinca alkaloids, and platinum compounds. The pathways described so far are diverse and target various components of the peripheral Nervous System (PNS). Among the contributors to neuropathic pain, inflammation has been indicated as a powerful driver of CIPN.
  • 1.0K
  • 28 Mar 2022
Topic Review
Obstructive Sleep Apnoea, Inflammation and Cardio-Metabolic Diseases
Obstructive sleep apnoea (OSA) is a prevalent underdiagnosed disorder whose incidence increases with age and weight. Uniquely characterised by frequent breathing interruptions during sleep—known as intermittent hypoxia (IH)—OSA disrupts the circadian rhythm. Patients with OSA have repeated episodes of hypoxia and reoxygenation, leading to systemic consequences. OSA consequences range from apparent symptoms like excessive daytime sleepiness, neurocognitive deterioration and decreased quality of life to pathological complications characterised by elevated biomarkers linked to endocrine-metabolic and cardiovascular changes. OSA is a well-recognized risk factor for cardiovascular and cerebrovascular diseases.
  • 1.0K
  • 24 Apr 2023
Topic Review
C/EBPδ in Pancreatic Ductal Adenocarcinoma
CCAAT/enhancer-binding protein δ (C/EBPδ) is a transcription factor involved in growth arrest and differentiation, which has consequently been suggested to harbor tumor suppressive activities. However, C/EBPδ over-expression also correlates with poor prognosis in glioblastoma and promotes genomic instability in cervical cancer, hinting at an oncogenic role of C/EBPδ in these contexts. This entry outlines the role of C/EBPδ in pancreatic ductal adenocarcinoma. In cell lines of this cancer, C/EBPδ exerts a tumor suppressive role by attenuating clonogenicity, proliferation and tumor sphere formation.
  • 1.0K
  • 26 Oct 2020
Topic Review
Vitamin D May Protect against Breast Cancer
In general, the protective effect of vitamin D3 against breast cancer is underlined by inhibition of proliferation and migration, stimulation of differentiation and apoptosis, and inhibition of epithelial/mesenchymal transition in breast cells. Vitamin D3 may also inhibit the transformation of normal mammary progenitors into breast cancer stem cells that initiate and sustain the growth of breast tumors. As long noncoding RNAs (lncRNAs) play an important role in breast cancer pathogenesis, and the specific mechanisms underlying this role are poorly understood, we provided several arguments that vitamin D3/VDR may induce protective effects in breast cancer through modulation of lncRNAs that are important for breast cancer pathogenesis.
  • 1.0K
  • 01 Apr 2022
Topic Review
Heat Shock Protein B8
The Heat Shock Protein B8 (HSPB8) is a small chaperone involved in chaperone-assisted selective autophagy (CASA). CASA promotes the selective degradation of proteins to counteract cell stress such as tumor-induced stress. HSPB8 is also involved in (i) the cell division machinery regulating chromosome segregation and cell cycle arrest in the G0/G1 phase and (ii) inflammation regulating dendritic cell maturation and cytokine production. HSPB8 expression and role are tumor-specific, showing a dual and opposite role.
  • 1.0K
  • 10 Mar 2021
Topic Review
Bone in Inherited Endocrine Tumors
Endocrine tumors are neoplasms originating from specialized hormone-secreting cells. They can develop as sporadic tumors, caused by somatic mutations, or in the context of familial Mendelian inherited diseases. Congenital forms, manifesting as syndromic or non-syndromic diseases, are caused by germinal heterozygote autosomal dominant mutations in oncogenes or tumor suppressor genes.
  • 1.0K
  • 30 Aug 2021
Topic Review
ALDH in Gynecologic Malignancies
Gynecologic cancers cause over 600,000 deaths annually in women worldwide. The development of chemoresistance after initial rounds of chemotherapy contributes to tumor relapse and death due to gynecologic malignancies. In this regard, cancer stem cells (CSCs), a subpopulation of stem cells with the ability to undergo self-renewal and clonal evolution, play a key role in tumor progression and drug resistance. Aldehyde dehydrogenases (ALDH) are a group of enzymes shown to be robust CSC markers in gynecologic and other malignancies. These enzymes also play functional roles in CSCs, including detoxification of aldehydes, scavenging of reactive oxygen species (ROS), and retinoic acid (RA) signaling, making ALDH an attractive therapeutic target in various clinical scenarios. In this review, we discuss the critical roles of the ALDH in driving stemness in different gynecologic malignancies. We review inhibitors of ALDH, both general and isoform-specific, which have been used to target CSCs in gynecologic cancers. Many of these inhibitors have been shown to be effective in preclinical models of gynecologic malignancies, supporting further development in the clinic. Furthermore, ALDH inhibitors, including 673A and CM037, synergize with chemotherapy to reduce tumor growth. Thus, ALDH-targeted therapies hold promise for improving patient outcomes in gynecologic malignancies.
  • 1.0K
  • 20 Feb 2021
Topic Review
Alcohol-Poisoning Symptoms
Lactic Acid Bacteria (LAB) are recognized as “probiotics.” The word “probiotics” is defined as “the live microorganisms conferring a health benefit on the host when administered in adequate amounts”, and probiotic LAB strains traditionally have been used to manufacture fermented foods. It has been reported that some LAB cells and fermented foods containing the bacteria have potent health benefits, such as promoting intestinal homeostasis, possessing anti-allergic properties, and preventing and improving obesity.
  • 1.0K
  • 01 Nov 2020
Topic Review
δ-Cells
Somatostatin-secreting δ-cells have aroused great attention due to their powerful roles in coordination of islet insulin and glucagon secretion and maintenance of glucose homeostasis. δ-cells exhibit neuron-like morphology with projections which enable pan-islet somatostatin paracrine regulation despite their scarcity in the islets. 
  • 1.0K
  • 06 Apr 2021
Topic Review
Thymoquinone and Curcumin
D-galactose (D-gal) administration causes oxidative disorder and is widely utilized in aging animal models. Therefore, subcutaneously injected D-gal at 200 mg/kg BW dose to assess the potential preventive effect of thymoquinone (TQ) and curcumin (Cur) against the oxidative alterations induced by D-gal. Other than the control, vehicle, and D-gal groups, the TQ and Cur treated groups were orally supplemented at 20 mg/kg BW of each alone or combined. TQ and Cur effectively suppressed the oxidative alterations induced by D-gal in brain and heart tissues. The TQ and Cur combination significantly decreased the elevated necrosis in the brain and heart by D-gal. It significantly reduced brain caspase 3, calbindin, and calcium-binding adapter molecule 1 (IBA1), heart caspase 3, and BCL2. Expression of mRNA of the brain and heart TP53, p21, Bax, and CASP-3 were significantly downregulated in the TQ and Cur combination group along with upregulation of BCL2 in comparison with the D-gal group. Data suggested that the TQ and Cur combination is a promising approach in aging prevention. 
  • 1.0K
  • 28 Jun 2021
Topic Review
Asymptomatic Heart Failure
Heart failure (HF) is one of the major causes of morbidity and mortality worldwide and represents an escalating problem for healthcare system. Therefore, it would be of utmost importance to identify asymptomatic individuals with left ventricular dysfunction before the onset of symptoms. Furthermore, special attention should be focused on individuals who are already classified as NIHA I and "apparently healed" patients, who have been diagnosed with HF and whose clinical condition is stable thanks to therapy. These patients usually suffer from a worsening of their condition over time, and therefore recognizing these changes at the onset would be a great achievement.
  • 1.0K
  • 13 Jul 2021
Topic Review
HuR and Hepatobiliary Cancers
HuR owns the post-transcriptional control of a large number of RNAs, enabling the protein to play pivotal roles that are dictated by the molecular functions of the transcripts. HuR targets, chiefly, include many mRNAs encoding proteins involved in cell proliferation, senescence, apoptosis, differentiation, stress, and immune responses. In turn, HuR was found to be involved not only in physiological processes (e.g., adipogenesis and muscle differentiation) but also in disease (primarily, cancer and inflammation). 
  • 1.0K
  • 24 Jun 2022
Topic Review
Application of Molecular Hydrogen to Postharvest Produce
Molecular hydrogen (H2) has been found to have significant effects in a range of organisms, from plants to humans. In the biomedical arena it has been found to have positive effects for neurodegenerative disease and even for treatment of COVID-19. In plants H2 has been found to improve seed germination, foliar growth, and crops: effects being most pronounced under stress conditions. It has also been found that treatment with H2 can improve the postharvest preservation of fruits, vegetables and flowers.
  • 1.0K
  • 04 Nov 2022
Topic Review
Glutathione in Brain Disorders and Aging
Glutathione is a remarkably functional molecule with diverse features, which include being an antioxidant, a regulator of DNA synthesis and repair, a protector of thiol groups in proteins, a stabilizer of cell membranes, and a detoxifier of xenobiotics. Glutathione exists in two states-oxidized and reduced. Under normal physiological conditions of cellular homeostasis, glutathione remains primarily in its reduced form.
  • 1.0K
  • 22 Feb 2022
Topic Review
PPAR Ligands in Viral Infections
Peroxisome Proliferator-Activated Receptors (PPARs), belonging to the nuclear receptor superfamily, are transcription factors playing well-established roles in several metabolic pathways in the organism, including lipid and glucose metabolism, energetic homeostasis, cell differentiation and proliferation. Since their discovery, a body of knowledge has been collected on them, and the three receptor subtypes (PPARα, PPARγ, PPARβ/δ) have attracted a great deal of efforts by medicinal chemists to identify novel drugs targeting the metabolism. PPAR agonists, antagonists, and modulators represent important pharmacological tools to induce beneficial therapeutic effects in metabolic disorders, such as metabolic syndrome, obesity, diabetes, and others.
  • 1.0K
  • 30 Jan 2022
Topic Review
COVID-19 and One-Carbon Metabolism
Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of long COVID-19 are similar to those presented by subjects suffering from vitamin B12 deficiency (pernicious anemia). The metabolism of a cell infected by the SARS-CoV-2 virus is reshaped to fulfill the need for massive viral RNA synthesis, which requires de novo purine biosynthesis involving folate and one-carbon metabolism. Many aspects of host sulfur amino acid metabolism, particularly glutathione metabolism underlying antioxidant defenses, are also taken over by the SARS-CoV-2 virus. 
  • 1.0K
  • 18 Apr 2022
Topic Review
Molecular Mechanism of Autophagy Regulation by Persulfidation
The term “autophagy”, (from the Greek words auto, meaning “self” and phagein, meaning “to eat”)—literally, eating one’s self—was first created by Christian de Duve over 40 years ago, who discovered lysosomes and provided clear proof of their participation in this process. It is an evolutionarily conserved process of degradation and recycling in eukaryotic organisms. The research of H2S as a signaling molecule has been focused on the effect of sulfide donors on different diseases and physiological pathways, until in 2009 when Snyder’s group described persulfidation or S-sulfhydration as the mechanism of H2S signaling. Since then, numerous targets have been identified to undergo persulfidation, and it has become recognized as the main mechanism by which H2S controls several cellular functions. Persulfidation is a posttranslational modification of cysteine residues, where a thiol group (RSH) is transformed into a persulfide group (RSSH)
  • 1.0K
  • 22 Apr 2022
Topic Review
Signal Peptide-CUB-EGF Domain-Containing Protein in Cancer
Signal peptide, CUB, and EGF-like domain-containing proteins (SCUBE) are secretory cell surface glycoproteins that play key roles in the developmental process. SCUBE proteins participate in the progression of several diseases, including cancer, and are recognized for their oncogenic and tumor suppressor functions depending on the cellular context. SCUBE proteins promote cancer cell proliferation, angiogenesis, invasion, or metastasis, stemness or self-renewal, and drug resistance. The association of SCUBE with other proteins alters the expression of signaling pathways, including Hedgehog, Notch, TGF-β/Smad2/3, and β-catenin. Further, SCUBE proteins function as potential prognostic and diagnostic biomarkers for breast cancer, renal cell carcinoma, endometrial carcinoma, and nasopharyngeal carcinoma.
  • 1.0K
  • 28 Sep 2022
Topic Review
Squamous Cell Carcinomas
Squamous cell carcinomas (SCCs) are cancers that arise from both stratified squamous and non-squamous epithelium of diverse anatomical sites and collectively represent one of the most frequent solid tumors. Despite such heterogeneous anatomical origins, SCCs have unified oncogenic and metabolic features centered around maintaining redox homeostasis that may ultimately be attractive therapeutic targets.
  • 1.0K
  • 06 Apr 2021
  • Page
  • of
  • 133
Academic Video Service