You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
MicroRNA Modulation
The prevalence of obesity has dramatically increased over the last decades. Weight loss obtained through diet and exercise leads to a  significant decrease in morbidity and mortality. Recently, there has been growing interest in the possible beneficial effects of dietary supplements (DSs), including polyphenols, fatty acids, and other plant-derived substances, as adjuvants in the management of obesity and metabolic diseases. Specifically, polyphenols, widely spread in vegetables and fruits, significantly modulate adipose tissue activities,  contrasting inflammation and improving insulin sensitivity in preclinical and clinical studies. Remarkably, polyphenols are involved in complex microRNA networks, which play crucial roles in metabolic processes. The administration of different polyphenols and other plant-derived compounds led to significant changes in the microRNA expression profile in peripheral tissues in a growing number of preclinical studies. In particular, these compounds were able to revert obesity-induced microRNA dysregulation, leading to the inhibition of adipogenesis and the induction of weight loss. Furthermore, through microRNA modulation, they attenuated key metabolic alterations, including insulin resistance and lipid anomalies, in animal models of obesity. Some of them were also able to reduce proinflammatory cytokines in adipose tissue. The aim of this review is to summarize current evidence about the effect of plant-derived DSs on microRNA expression in obesity.
  • 1.1K
  • 29 Jan 2021
Topic Review
Pharmacotherapeutic Approaches to Treatment of Muscular Dystrophies
Muscular dystrophies are a heterogeneous group of genetic muscle-wasting disorders that are subdivided based on the region of the body impacted by muscle weakness as well as the functional activity of the underlying genetic mutations. A common feature of the pathophysiology of muscular dystrophies is chronic inflammation associated with the replacement of muscle mass with fibrotic scarring. With the progression of these disorders, many patients suffer cardiomyopathies with fibrosis of the cardiac tissue. Anti-inflammatory glucocorticoids represent the standard of care for Duchenne muscular dystrophy, the most common muscular dystrophy worldwide; however, long-term exposure to glucocorticoids results in highly adverse side effects, limiting their use. Thus, it is important to develop new pharmacotherapeutic approaches to limit inflammation and fibrosis to reduce muscle damage and promote repair.
  • 1.1K
  • 18 Dec 2023
Topic Review
Role of TRPA1 and TRPV1
TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.
  • 1.1K
  • 13 Apr 2021
Topic Review
Epigenetic Changes and Chromatin Reorganization in Brain Function
Healthy brain functioning in mammals requires a continuous fine-tuning of gene expression. Accumulating evidence over the past demonstrates that epigenetic mechanisms and dynamic changes in chromatin organization are critical components during the control of gene transcription in neural cells. Genome-wide analyses show that the regulation of brain genes requires the contribution of both promoter and long-distance enhancer elements, which must functionally interact to upregulate gene expression in response to physiological cues. Hence, a deep comprehension of the mechanisms mediating these enhancer–promoter interactions (EPIs) is critical if people are to understand the processes associated with learning, memory and recall. Moreover, the onset and progression of several neurodegenerative diseases and neurological alterations are found to be strongly associated with changes in the components that support and/or modulate the dynamics of these EPIs. 
  • 1.1K
  • 28 Oct 2022
Topic Review
Regulation of Cell Proliferation by Calcineurin
Calcineurin, a calcium-dependent serine/threonine phosphatase, integrates the alterations in intracellular calcium levels into downstream signaling pathways by regulating the phosphorylation states of several targets. Intracellular Ca2+ is essential for normal cellular physiology and cell cycle progression at certain critical stages of the cell cycle. Recently, it was reported that calcineurin is activated in a variety of cancers. Given that abnormalities in calcineurin signaling can lead to malignant growth and cancer, the calcineurin signaling pathway could be a potential target for cancer treatment. For example, NFAT, a typical substrate of calcineurin, activates the genes that promote cell proliferation. Furthermore, cyclin D1 and estrogen receptors are dephosphorylated and stabilized by calcineurin, leading to cell proliferation. 
  • 1.1K
  • 08 Feb 2022
Topic Review
NGF Peptides Bind Copper(II)
Nerve growth factor (NGF) is a protein essential to neurons survival, which interacts with its receptor as a non-covalent dimer. Copper affects biological activity of NGF and conversely NGF may regulates copper trafficking in synaptic cleft.
  • 1.1K
  • 10 Jun 2021
Topic Review
Evaluation of Biological Activity of Natural Compounds
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries.
  • 1.1K
  • 01 Aug 2022
Topic Review
Milk Exosomes as Drug Delivery Agents
Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities. Milk exosomes are highly resistant to the harsh conditions of the gastrointestinal tract. In vitro studies have demonstrated that milk exosomes have an affinity to epithelial cells, are digested by cells by endocytosis mechanism, and can be used for oral delivery. With milk exosome membranes containing hydrophilic and hydrophobic components, exosomes can be loaded with hydrophilic and lipophilic drugs.
  • 1.1K
  • 21 Jun 2023
Topic Review
Protein Lipoxidation
Protein lipoxidation is a non-enzymatic post-translational modification that consists of the covalent addition of reactive lipid species to proteins. This occurs under basal conditions but increases in situations associated with oxidative stress. Protein targets for lipoxidation include metabolic and signalling enzymes, cytoskeletal proteins, and transcription factors, among others. There is strong evidence for the involvement of protein lipoxidation in disease, including atherosclerosis, neurodegeneration, and cancer. Nevertheless, the involvement of lipoxidation in cellular regulatory mechanisms is less understood. Moreover, given the great structural variety of electrophilic lipid species, protein lipoxidation can contribute to the generation of multiple structurally and functionally diverse protein species. Finally, the nature of the lipoxidised proteins and residues provides a frameshift for a complex interplay with other post-translational modifications, including redox and redox-regulated modifications, such as oxidative modifications and phosphorylation.
  • 1.1K
  • 08 Apr 2021
Topic Review
Succinate Dehydrogenase and Cellular Energy Metabolism
Succinate dehydrogenase (SDH) is one of the enzymes of the tricarboxylic acid cycle (Krebs cycle) and complex II of the mitochondrial respiratory chain. Succinate dehydrogenase by pesticides (SDHIs) constitute a class of pesticides to fight against fungi. This represents roughly a dozen different molecules sharing the property to inhibit the succinate dehydrogenase (SDH), an enzyme implicated in carbon metabolism and cellular respiration.
  • 1.1K
  • 07 Mar 2023
Topic Review
Voltage-Dependent Anion Selective Channel
VDAC (voltage-dependent anion selective channel) proteins, also known as mitochondrial porins, are the most abundant proteins of the outer mitochondrial membrane (OMM) where they play a vital role in various cellular processes, in the regulation of metabolism, and in survival pathways.
  • 1.1K
  • 19 Apr 2022
Topic Review
Esterification of Docosahexaenoic Acid  in Brain Diseases
Docosahexaenoic acid-containing lysophosphatidylcholine (DHA-LysoPC) is presented as the main transporter of DHA from blood plasma to the brain. This is related to the major facilitator superfamily domain-containing protein 2A (Mfsd2a) symporter expression in the blood–brain barrier that recognizes the various lyso-phospholipids that have choline in their polar head. In order to stabilize the DHA moiety at the sn-2 position of LysoPC, the sn-1 position was esterified by the shortest acetyl chain, creating the structural phospholipid 1-acetyl,2-docosahexaenoyl-glycerophosphocholine (AceDoPC). This small structure modification allows the maintaining of the preferential brain uptake of DHA over non-esterified DHA. Additional properties were found for AceDoPC, such as antioxidant properties, especially due to the aspirin-like acetyl moiety, as well as the capacity to generate acetylcholine in response to the phospholipase D cleavage of the polar head. Esterification of DHA within DHA-LysoPC or AceDoPC could elicit more potent neuroprotective effects against neurological diseases.
  • 1.1K
  • 22 Nov 2022
Topic Review
Physical Methods Used to Inactivate Bacteriophages
Bacteriophage-based applications have a renaissance today, increasingly marking their use in industry, medicine, food processing, biotechnology, and more. However, phages are considered resistant to various harsh environmental conditions; besides, they are characterized by high intra-group variability. Phage-related contaminations may therefore pose new challenges in the future due to the wider use of phages in industry and health care. The risk of bacteriophage infection can be reduced by several techniques, including sterilization by physical agents.
  • 1.1K
  • 08 Mar 2023
Topic Review
Molecular and Cellular Functions of S100A10
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. 
  • 1.1K
  • 13 Oct 2023
Topic Review
Quercetin against Neurodegenerative Diseases Progression
Berries are well-known fruits for their antioxidant effects due to their high content of flavonoids, and quercetin is one of the potent bioactive flavonoids. Although oxidative stress is an inevitable outcome in cells due to energy uptake and metabolism and other factors, excessive oxidative stress is considered a pivotal mediator for the cell death and leads to the progression of neurodegenerative diseases (NDDs). Furthermore, oxidative stress triggers inflammation that leads to neuronal cell loss. Alzheimer’s, Parkinson’s, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and so on are the main neurodegenerative diseases.
  • 1.1K
  • 29 Dec 2022
Topic Review
Intersection of AhR and Wnt Signaling
This entry is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function and occupy a central position in a variety of processes linked with development and various pathological conditions. 
  • 1.1K
  • 22 May 2023
Topic Review
Ion Channels Involved in Oxidative Stress-Related Gastrointestinal Diseases
Ion channels (ICs) are integral membrane proteins that play a crucial role in regulating the ions’ flow across cell membranes. They are essential for maintaining cellular homeostasis and are involved in various physiological processes. The pathogenesis of various gastrointestinal (GI) disorders, including gastritis, ulcers, inflammatory bowel disease (IBD) and cancer, can be linked to oxidative stress. It is known that reactive species carry out a crucial role in the genesis and progression of these pathologies; however, the contribution of ionic channels in their development is still under discussion. The function of ion channels in the gastrointestinal tract influences a variety of cellular processes.
  • 1.1K
  • 31 Aug 2023
Topic Review
Chitosan-Coated Gold Nanoparticles
Delivery of small interfering RNA (siRNA) provides one of the most powerful strategies for downregulation of therapeutic targets. Despite the widely explored capabilities of this strategy, intracellular delivery is hindered by a lack of carriers that have high stability, low toxicity and high transfection efficiency. Here we propose a layer by layer (LBL) self-assembly method to fabricate chitosan-coated gold nanoparticles (CS-AuNPs) as a more stable and efficient siRNA delivery system. 
  • 1.1K
  • 06 Apr 2021
Topic Review
The Structure and Function of ABCA1
The adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) was identified by Luciani et al. over 36 years ago by PCR cloning and found to be located on chromosome 9q22-31. ABCA1 belongs to what was then a growing family of transmembrane proteins sharing many structural and functional similarities. ABCA1 was initially thought to be involved in the phagocytosis of apoptotic cells and to play a role in the regulation of the inflammatory response. Recent studies of structure-function relationships have shown that ABCA1 transports cholesterol and phospholipids across the plasma membrane to generate high-density lipoproteins (HDLs).
  • 1.1K
  • 28 Feb 2023
Topic Review
Rejuvenate Aging Cells and Tissues
Rejuvenate aging cells and tissues is strategies to delay and potentially even reverse the aging process.
  • 1.1K
  • 26 May 2021
  • Page
  • of
  • 133
Academic Video Service