Your browser does not fully support modern features. Please upgrade for a smoother experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Integrin-Based Therapeutics in Diseases
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. 
  • 1.1K
  • 31 Jan 2023
Topic Review
Inositols
Inositols, especially myo-inositol and inositol hexakisphosphate, also known as phytic acid or IP6, with their biological activities received much attention for their role in multiple health beneficial effects. Although their roles in cancer treatment and prevention have been extensively reported, interestingly, they may also have distinctive properties in energy metabolism and metabolic disorders.
  • 1.1K
  • 10 Dec 2020
Topic Review
Potential Chemicals from Plastic Wastes
Plastic is referred to as a “material of every application”. From the packaging and automotive industries to the medical apparatus and computer electronics sectors, plastic materials are fulfilling demands efficiently. These plastics usually end up in landfills and incinerators, creating plastic waste pollution. According to the Environmental Protection Agency (EPA), in 2015, 9.1% of the plastic materials generated in the U.S. municipal solid waste stream was recycled, 15.5% was combusted for energy, and 75.4% was sent to landfills. 
  • 1.1K
  • 10 Jun 2021
Topic Review
Antimicrobial Lipids from Plants and Marine Organisms
Medicinal plants and marine organisms are natural sources of many antimicrobial compounds. Plant components with antimicrobial activity include alkaloids, sulfur-containing compounds, diterpenes/terpenoids, fatty acids (FA), some carbohydrates, steroidal glycosides, and phenolic compounds. Both primary and secondary metabolites are “generally recognized as safe” (GRAS) substances and the chance of triggering antimicrobial resistance is low. The most studied antimicrobial compounds of marine origin are peptides and alkaloids, contrarily to lipids. However, lipids are ubiquitously distributed in the different marine phyla, being quite abundant in some of them. Besides, several lipid classes from marine organisms have been recognized by their biological activity with a high potential to discover new antimicrobial compounds.
  • 1.1K
  • 15 Dec 2021
Topic Review
Polyphenols’ Cardioprotective Potential
According to the World Health Organization, cardiovascular diseases are responsible for 31% of global deaths. A reduction in mortality can be achieved by promoting a healthy lifestyle, developing prevention strategies, and developing new therapies. Polyphenols are present in food and drinks such as tea, cocoa, fruits, berries, and vegetables. These compounds have strong antioxidative properties, which might have a cardioprotective effect.  
  • 1.1K
  • 19 Feb 2021
Topic Review
Graft-versus-Host Disease
Allogeneic cell therapies, defined by genetically mismatched transplantation, have the potential to become a cost-effective solution for cell-based cancer immunotherapy. This type of therapy is often accompanied by the development of graft-versus-host disease (GvHD), induced by the mismatched major histocompatibility complex (MHC) between healthy donors and recipients, leading to severe complications and death.
  • 1.1K
  • 28 Feb 2023
Topic Review
α-Helices in the T3SEs
Type III Secretion Systems (T3SSs) are multicomponent nanomachines located at the cell envelope of Gram-negative bacteria. Their main function is to transport bacterial proteins either extracellularly or directly into the eukaryotic host cell cytoplasm. Type III Secretion effectors (T3SEs), latest to be secreted T3S substrates, are destined to act at the eukaryotic host cell cytoplasm and occasionally at the nucleus, hijacking cellular processes through mimicking eukaryotic proteins. T3SE families adopt novel folds to target eukaryotic functions. These folds comprise a high helical content, which possibly reflects the specific requirements from T3SS effectors. In particular, effectors must (i) be able to be easily unfolded, (ii) cross the narrow T3S channel, (iii) be highly folded as soon as they will be found inside the host cell, in order to evade the host defense mechanisms, and (iv) display functional competence and structural plasticity in their final destination. α-helices can optimally fulfil these requirements.
  • 1.1K
  • 06 Jun 2021
Topic Review
Thyroid Cancer from the Tumor-Suppressor Genes Perspective
Thyroid cancer is the most frequent endocrine malignancy and accounts for approximately 1% of all diagnosed cancers. A variety of mechanisms are involved in the transformation of a normal tissue into a malignant one. Loss of tumor-suppressor gene (TSG) function is one of these mechanisms. By identifying alterations in these genes and their protein products, people can understand the thyroid cancer-related gene changes for the development of diagnostic, prognostic, and therapeutic strategies for this cancer.
  • 1.1K
  • 31 May 2022
Topic Review
Tyrosyl-DNA Phosphodiesterase 1
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3′ end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. 
  • 1.1K
  • 27 Mar 2023
Topic Review
Polymerase-1 (PARP)-1 and Cancer
One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. 
  • 1.1K
  • 28 Apr 2021
Topic Review
Uncoupling Aging from Chronological Time
Cellular life evolved from simple unicellular organisms that could replicate indefinitely, being essentially ageless. At this point, life split into two fundamentally different cell types: the immortal germline representing an unbroken lineage of cell division with no intrinsic endpoint and the mortal soma, which ages and dies. We consider aging as a process not fixed to the pace of chronological time but one that can speed up or slow down depending on the rate of intrinsic cellular clocks. Moreover germline factor reprogramming might be used to slow the rate of aging and potentially reverse it by causing the clocks to tick backward. Therefore, reprogramming may eventually lead to therapeutic strategies to treat degenerative diseases by altering aging itself, the one condition common to us all.
  • 1.1K
  • 15 Jun 2025
Topic Review
Protein Tyrosine Phosphatases
Protein tyrosine kinases, especially receptor tyrosine kinases, have dominated the cancer therapeutics sphere as proteins that can be inhibited to selectively target cancer. However, protein tyrosine phosphatases (PTPs) are also an emerging target. Though historically known as negative regulators of the oncogenic tyrosine kinases, PTPs are now known to be both tumor-suppressive and oncogenic.
  • 1.1K
  • 07 Dec 2021
Topic Review
Obesity and Lipids
Recently, lipidomics has become an important branch of medical/clinical sciences similar to proteomics and genomics. Due to the much higher lipid accumulation in obese patients and many alterations in the compositions of various groups of lipids, the methods used for sample preparations for lipidomic studies of samples from obese subjects sometimes have to be modified. Appropriate sample preparation methods allow for the identification of a wide range of analytes by advanced analytical methods, including mass spectrometry. This is especially the case in studies with obese subjects, as the amounts of some lipids are much higher, others are present in trace amounts, and obese subjects have some specific alterations of the lipid profile. 
  • 1.1K
  • 01 Dec 2020
Topic Review
Dye Decoloring Peroxidase
Dye decoloring peroxidases (DyPs) were named after their high efficiency to decolorize and degrade a wide range of dyes. DyPs are a type of heme peroxidase and are quite different from known heme peroxidases in terms of amino acid sequences, protein structure, catalytic residues, and physical and chemical properties. DyPs oxidize polycyclic dyes and phenolic compounds.
  • 1.1K
  • 07 Sep 2021
Topic Review
Cellular Prion Protein in Cancer Biology
Prion-like proteins and prions (PrPC), the prion protein cellular form, shares 90% of its amino acid sequence with other mammalian proteins. PrPCs are expressed almost in all tissues of an organism, but a higher amount of PrPCs has been found in the central nervous system (CNS), particularly the synaptic membranes and PrPC are linked. Scrapie PrP (PrPSc), a mutant cellular prion protein with an altered structure, is assumed to be the key etiological cause of prion diseases. Cancers are worldwide health concerns, whether they are sporadic or hereditary. The fundamental mechanism that causes somatic or oncogenic mutations and ultimately aids cancer development is still unknown. However, mammalian cells with protein-only somatic inheritance may also contribute to cancerous malignancies. Emerging data from a recent study show that prion-like proteins and prions (PrPC) are crucial entities that have a functional role in developing neurological disorders and cancer. Furthermore, excessive PrPC expression profiling has also been detected in non-neuronal tissues, such as the lymphoid cells, kidney, GIT, lung, muscle, and mammary glands. PrPC expression is strongly linked with the proliferation and metastasis of pancreatic, prostate, colorectal, and breast malignancies. Experimental investigation presented that the PrPC expression, including the prion protein-coding gene (PRNP) and p53 ag are directly associated with tumorigenicity and metastasis (tumor suppressor gene). The ERK2 (extracellular signal-regulated kinase) pathway also confers a robust metastatic capability for PrPC-induced epithelial to mesenchymal transition. Additionally, prions could alter the epigenetic regulation of genes and overactive the mitogen-activated protein kinase (MAPK) signaling pathway, which promotes the development of cancer in humans. 
  • 1.1K
  • 17 Jul 2025
Topic Review
Current Potential Therapeutic Approaches against SARS-CoV-2
The ongoing SARS-CoV-2 pandemic is a serious threat to public health worldwide and, to date, no effective treatment is available. Thus, we herein review the pharmaceutical approaches to SARS-CoV-2 infection treatment. Numerous candidate medicines that can prevent SARS-CoV-2 infection and replication have been proposed. These medicines include inhibitors of serine protease TMPRSS2 and angiotensin converting enzyme 2 (ACE2). The S protein of SARS-CoV-2 binds to the receptor in host cells. ACE2 inhibitors block TMPRSS2 and S protein priming, thus preventing SARS-CoV-2 entry to host cells. Moreover, antiviral medicines (including the nucleotide analogue remdesivir, the HIV protease inhibitors lopinavir and ritonavir, and wide-spectrum antiviral antibiotics arbidol and favipiravir) have been shown to reduce the dissemination of SARS-CoV-2 as well as morbidity and mortality associated with COVID-19
  • 1.1K
  • 12 Nov 2021
Topic Review
Fluorescent Protein-Based Metal Biosensors
Fluorescent proteins (FPs) are optical probes that are used to track the functions of genetically encoded target molecules in molecular and cellular biology. FPs have intrinsic photophysical properties generated by the chromophore and its surrounding amino acid sequences. The intensity of the fluorescence emission of FPs can be changed using external factors such as pH or metal ions.
  • 1.1K
  • 21 Jun 2023
Topic Review
Prion Organotypic Slice Culture
The prion organotypic slice culture assay (POSCA) is a cerebellar slice culture that was originally developed to take advantage of the transmissible nature of prions, propagating prion infection ex vivo. Because much of the cytoarchitexture is preserved, this system allows the study of pathogenesis in an open system and is amenable to manipulation of cell types and testing of therapeutics. The culture has been adapted to other brain areas, different prion strains, and has also been applied to other neurodegenerative diseases that are prion-like in their transmissible propagation of protein misfolding, including Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, amyotrophic lateral sclerosis and Huntington’s disease. This entry provides a review of POSCA as used in the prion field. For a review of its application to other neurodegenerative diseases, please see the associated review article in Biomolecules.
  • 1.1K
  • 11 Aug 2020
Topic Review
Curcumin and Alzheimer’s Disease
Curcumin is a polyphenolic natural compound with diverse and attractive biological properties, which may prevent or ameliorate pathological processes underlying age-related cognitive decline, Alzheimer’s disease (AD), dementia, or mode disorders. AD is a chronic neurodegenerative disorder that is known as one of the rapidly growing diseases, especially in the elderly population. Moreover, being the eminent cause of dementia, posing problems for families, societies as well a severe burden on the economy. There are no effective drugs to cure AD. Although curcumin and its derivatives have shown properties that can be considered useful in inhibiting the hallmarks of AD, however, they have low bioavailability. Furthermore, to combat diagnostic and therapeutic limitations, various nanoformulations have also been recognized as theranostic agents that can also enhance the pharmacokinetic properties of curcumin and other bioactive compounds. Nanocarriers have shown beneficial properties to deliver curcumin and other nutritional compounds against the blood-brain barrier to efficiently distribute them in the brain. 
  • 1.1K
  • 06 Jan 2021
Topic Review
Primary Cilia in Acquired Heart Disease
Primary cilia are non-motile plasma membrane extrusions that display a variety of receptors and mechanosensors. Loss of function results in ciliopathies, which have been strongly linked with congenital heart disease, as well as abnormal development and function of most organ systems. 
  • 1.1K
  • 24 Mar 2022
  • Page
  • of
  • 133
Academic Video Service