You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Antiviral and Antimicrobial Peptides
Antimicrobial peptides (AMPs) are a ubiquitous class of secretable molecules involved in innate immunity via direct interaction with pathogens. AMP research has sought to describe the highly conserved cysteine rich C-domains of peptides, which determine molecular function; however, investigations into such molecular functions have generally been limited to antibacterial and antifungal defence in both vertebrates and invertebrates, with little research focusing on mollusc antiviral AMPs. Mollusc AMPs can be broadly divided into the following five groups: defensins, big defensins, mytilins, myticins, mytimacins, and mytimycins. All groups possess antibacterial activity, though few have been tested for antiviral activity, and thus the mollusc antiviral AMP mode of action is poorly understood. However, proposed modes of action of antiviral AMPs include targeting viral entry, viral uncoating, and inhibition of viral replication and endosomal escape.
  • 560
  • 07 Mar 2022
Topic Review
Conservation
The biodiversity of our planet is under threat, with approximately one million species expected to become extinct within decades. The reason: negative human actions, which include hunting, overfishing, pollution, and the conversion of land for urbanisation and agricultural purposes. Despite significant investment from charities and governments for activities that benefit nature, global wildlife populations continue to decline. Local wildlife guardians have historically played a critical role in global conservation efforts and have shown their ability to achieve sustainability at various levels.
  • 560
  • 13 Jun 2023
Topic Review
Marine Polysaccharides and Pigs Weaning
Weaning is the most crucial event in commercial pig farms in terms of animal productivity and health. The newly weaned pig not only transits from milk to a solid and more complex diet, but is also subjected to additional stressors including separation from sow and littermates, co-mingling with unknown pigs, adaptation to new environmental settings, and increased pathogen exposure. All these stressors result in reduced feed intake, lasting up to 48 h post-weaning, which is the main driver of the observed gastrointestinal dysfunction, poor performance, and post-weaning diarrhoea (PWD). Marine polysaccharides from macroalgae and chitin provide an interesting source of novel bio-actives and are interesting group of natural dietary supplements for use in pig nutrition due to their prebiotic, antibacterial, and immunomodulatory activities. Hence, they offer great potential as preventatives and prophylactics in pig diets.
  • 559
  • 08 Oct 2021
Topic Review
Biology of Anthonomus testaceosquamosus Linell, 1897 (Coleoptera: Curculionidae)
Although native to northeastern Mexico and southern Texas, the hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell 1897, was recently discovered infesting hibiscus in south Florida in 2017. During outbreak events, HBW feeding on hibiscus buds has been found to significantly affect the marketability of the crop. Therefore, it is vital that an integrated pest management (IPM) program be developed for this pest in order to mitigate the economic loss to the hibiscus industry of south Florida.
  • 558
  • 26 Jan 2022
Topic Review
Potential of Microalgal Biostimulants for Sustainable Agricultural Practices
Plant biostimulants have long been considered an important source of plant growth stimulants in agronomy and agro-industries with both macroalgae (seaweeds) and microalgae (microalgae). There has been extensive exploration of macroalgae biostimulants.
  • 558
  • 08 Aug 2023
Topic Review
Pig FUT3 Methylation Regulates E. coli F18 Susceptibility
Post-weaning diarrhea (PWD) is frequently associated with E. coli F18 infections in piglets. However, the underlying molecular mechanism concerning the resistance of E. coli F18 in local weaned piglets in China is not clearly understood. In the present study, our findings indicated that the methylation of mC-3 and mC-5 sites has certain inhibitory effect on FUT3 expression and promotes the resistance of E. coli F18 in piglets. The underlined study may explore FUT3 as a new candidate target in E. coli F18 infection in Chinese local weaned piglets.
  • 557
  • 27 Oct 2021
Topic Review
Dendritic Cells and Exosomes in Antitumor Immunity
Dendritic cells play a fundamental role in the antitumor immunity cycle, and the loss of their antigen-presenting function is a recognized mechanism of tumor evasion. Recently it demonstrated the effect of exosomes extracted from serum of patients with acute myeloid leukemia as important inducers of dendritic cell immunotolerance, adding evidence on the important role of intercellular communication by nanoparticles on antitumor responses.
  • 557
  • 08 Dec 2021
Topic Review
Mechanism of Melatonin in Horticultural Plants
It has been discovered that melatonin, a hormone that is known for its involvement in regulating sleep-wake cycles in mammals, has a range of different functions in horticultural plants. Research has shown that melatonin plays an important role in many physiological processes in plants. This includes the regulation of growth and development, stress tolerance and antioxidant defense. Melatonin has been found to be beneficial in supporting seed germination, roots, shoot growth and biomass accumulation in horticultural crops. It also has a key role in regulating vegetative and reproductive growth stages, floral transition and leaf senescence. Moreover, melatonin helps to improve stress tolerance in crops by regulating root architecture, nutrient uptake and ion transport. Additionally, melatonin acts as a broad-spectrum antioxidant by effectively scavenging reactive oxygen species and enhancing antioxidant activity. The mechanism of melatonin's action in horticultural plants involves gene expressions, hormone signaling pathways and antioxidant defense pathways. Melatonin interacts with other plant growth regulators, including auxins, cytokinins and abscisic acid, to coordinate different physiological processes in plants. Melatonin has become a versatile chemical entity with diverse functions in horticultural plants and its potential applications in crop production and stress management are being increasingly explored. 
  • 557
  • 28 Aug 2023
Topic Review
Bioactive-Based Cosmeceuticals
Cosmetic-containing herbals are a cosmetic that has or is claimed to have medicinal properties, with bioactive ingredients purported to have medical benefits. 
  • 556
  • 10 Feb 2022
Topic Review
Oxidative Stress and Poultry
A challenge facing the poultry industry is related to the spread of pathogens within commercial farms and, consequently, its high dependence on antibiotics and other pharmaceuticals. Although the inclusion of antibiotics at sub-therapeutical levels in broiler diets has proven to be an efficient strategy through which to suppress the pathogenic bacteria in the gut and enhance animal performance, their usage as growth promoters has been banned in Europe due to concerns regarding the consequences of antibiotic resistance on human health. Under this context, plenty of phytochemicals and antioxidants are being explored in broiler diets.
  • 556
  • 15 Apr 2024
Topic Review
Olive Quick Decline Syndrome
Xylella fastidiosa subsp. pauca sequence type 53 was found to be associated with olive trees showing extensive twig and branch dieback and plant death in the Gallipoli area of Salento and the common name of “olive quick decline syndrome” (OQDS) was given to the disease. Repeated interceptions in Europe and Italy of ornamental coffee plants originated from Central America, jointly in phylogenetic analyses of many strains of the pathogen, indicated this origin as the most probable source of its introduction in Salento. Drought events could have been conducive to the initial outbreaks of the disease. Subsequently, the pathogen largely spread over the territory according to a “stratified dispersal” model. The high susceptibility of the local cultivars Ogliarola salentina and Cellina di Nardò, a low soil content of zinc, copper, and manganese, improper pruning, and adverse climatic events could have further contributed to the spread of the pathogen. The polyphagous insect Philaenus spumarius L. is the main vector of the bacterium in the area. The adults were detected X. f. subsp. pauca-positive in early May, and their incidence was higher during spring and early autumn when they efficiently spread the bacterium among the olive trees. Many other host plant species can host the bacterium, and some of them can act as a “reservoir” for the disease spread. The aggressive fungus Neofusicoccum mediterraneum Crous, M.J. Wingf. And A.J.L. Philips, could also be involved in OQDS. A sustainable control strategy for reducing the incidence and severity of X. f. subsp. pauca in the olive groves of Salento that allows the trees to produce is presented and discussed. Resilient trees of Ogliarola salentina and Cellina di Nardò have been observed in the heavily infected areas of Salento. 
  • 555
  • 04 Nov 2022
Topic Review
Lysosomal Membrane Permeabilization
Cancer is the second leading cause of death worldwide. Many tumors eventually become resistant to hormones, chemotherapy, and radiation by avoiding apoptosis.
  • 554
  • 24 Nov 2021
Topic Review
MATE Transporters Regulate Agronomic Traits
Multidrug and toxic compound extrusion (MATE) transporters are ancient proteins conserved among various kingdoms, from prokaryotes to eukaryotes. In plants, MATEs usually form a large family in the genome. Homologous MATE transporters have different subcellular localizations, substrate specificities, and responses to external stimuli for functional differentiations. The substrates of MATEs in plants include polyphenols, alkaloids, phytohormones, and ion chelators. The accumulation of these substrates is often associated with favorable agronomic traits such as seed and fruit colors, the balance between dormancy and germination, taste, and stress adaptability. In crops, wild germplasms and domesticated germplasms usually have contrasting agronomic traits such as seed color, seed taste, and stress tolerance. MATE transporters are involved in the regulations of these traits. 
  • 554
  • 05 May 2022
Topic Review
Soil by Grazing Sport Horses
Soil ingestion has been well documented for the majority of outside reared animals but not in horses. As soil can be a vector of environmental pollutants, such studies generally aim at controlling exposure to pollutant uptake in food producing animals.
  • 553
  • 05 Aug 2021
Topic Review
Bacillus megatherium 1259, Bull Calves
This study was conducted to investigate the effects of dietary supplementation with Bacillus megaterium 1259 (BM1259) on growth performance, nutrient digestibility, rumen fermentation, and blood biochemical parameters in Holstein bull calves. The results demonstrated that the addition of BM1259 to the diets can significantly improve the growth performance and elevate the apparent digestibility of crude protein and neutral detergent fiber. Moreover, supplementation with BM1259 ameliorated rumen fermentation and reduced the emission of both ammoniacal nitrogen and sulfuretted hydrogen in feces and urine. In addition, adding 12 g/head/day of BM1259 had no adverse effect on blood biochemical parameters and the health status of Holstein bull calves. This study demonstrates that BM1259 can be applied as a potential microecologics to improve production performance and nitrogen utilization in Holstein bull calves. 
  • 552
  • 01 Sep 2021
Topic Review
Microwave Heating and Plasma for Biosecurity Applications
Microwave heating has been shown to rapidly heat and kill a wide range of pests and pathogens. Examples of microwave thermal disinfestation of soils, grains, hay, and timber are presented and discussed. Microwave energy can also ionize various gasses, including air, to create plasma. Plasmas are described by many characteristics, such as temperature, degree of ionization, and density. In the “after glow” (cold plasma) of a plasma discharge, there are sufficient charged particles and excited atoms to generate elevated UV levels and ionize the surfaces of objects.
  • 552
  • 22 Nov 2022
Topic Review
Steller Sea Lion
The Steller Sea Lion (Eumetopias jubatus) is a charismatic marine mammal found along the coastlines of the North Pacific Ocean. Renowned for its impressive size and distinctive appearance, including thick fur and prominent whiskers, the Steller Sea Lion holds a prominent place in marine ecosystems as a top predator. Despite facing conservation challenges such as habitat degradation and competition with fisheries, these social and intelligent creatures continue to capture the fascination of researchers and wildlife enthusiasts alike.
  • 552
  • 08 Mar 2024
Topic Review
Antibiotics in LiveStock in China
The demand for animal protein has increased considerably worldwide, especially in China, where large numbers of livestock and poultry are produced. Antibiotics have been widely applied to promote growth and prevent diseases. However, the overuse of antibiotics in animal feed has caused serious environmental and health risks, especially the wide spread of antimicrobial resistance (AMR), which seriously affects animal and human health, food safety, ecosystems, and the sustainable future development of animal protein production.
  • 551
  • 18 May 2021
Topic Review
Potential Bioactive Molecules of Tamarillo (Cyphomandra betacea)
Tamarillo is an alternative for the consumption of food with high added value through various technological methodologies with nutritional quality and low cost, generating an economic impact on society. The objective of this research was to evaluate the potential of tamarillo red variety, as a source of bioactive compounds, to generate scientific information on the importance of its chemical composition and antioxidant and prebiotic properties. Different analyses were carried out: spectroscopic methods (IR, UV, NMR) of pulp flour and epicarp flour, antioxidant properties, prebiotic activity, and bromatological analysis. The spectra obtained by FTIR, UV, and NMR allowed the identification of chemical structures associated with the inulin-like functional groups. Pulp flour showed the highest prebiotic activity with values of 1.49 for Lactiacidbacillus. plantarum. Total phenolic compounds content in pulp flour was 206.23 mg/100 g dry weight, with an acceptable antioxidant property (ABTS+ = 6.27 TEAC and DPPH= %AA of 91.74 at a concentration of 250.00 µg/mL, 131.26 of IC50 ascorbic acid). The results regarding tamarillo as a source of bioactive molecules with important physiological properties as an antioxidant and putative prebiotic indicate it is a good alternative for the formulation of functional foods. 
  • 551
  • 14 Dec 2021
Topic Review
Impaired ROS Generation in Mitochondria
The excessive formation of reactive oxygen species (ROS) and impairment of defensive antioxidant systems leads to a condition known as oxidative stress. The main source of free radicals responsible for oxidative stress is mitochondrial respiration. The deleterious effects of ROS on cellular biomolecules, including DNA, is a well-known phenomenon that can disrupt mitochondrial function and contribute to cellular damage and death, and the subsequent development of various disease processes. 
  • 551
  • 29 Mar 2022
  • Page
  • of
  • 70
Academic Video Service