Topic Review
Ribosome Display Technology
Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. 
  • 756
  • 11 Mar 2022
Topic Review
Recent Applications of Retro-Inverso Peptides
Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case.
  • 755
  • 22 Sep 2021
Topic Review
Micro/Nanorobots for Medical Diagnosis and Disease Treatment
Micro/nanorobots are functional devices in microns, at nanoscale, which enable efficient propulsion through chemical reactions or external physical field, including ultrasonic, optical, magnetic, and other external fields, as well as microorganisms. Compared with traditional robots, micro/nanorobots can perform various tasks on the micro/nanoscale, which has the advantages of high precision, strong flexibility, and wide adaptability. In addition, such robots can also perform tasks in a cluster manner.
  • 755
  • 30 May 2022
Topic Review
Mitochondrial Aging and Natural Products with Protective Potential
It was found that mitochondrial activity decreases with aging and that degeneration is linked to the reductions in mitochondria, mRNA transcripts, protein expression, and mtDNA and increased oxidative stress. In particular, reduced protein synthesis hinders protein turnover. The inability to replace damaged proteins may explain why aging is related to reduced mitochondrial function. Mitochondria, the cellular organelles that produce most of the ATP, become dysfunctional during aging. This condition is coupled with inflammation, oxidative stress, and reduced cellular functionalities in every organ. Numerous genes have been linked to aging, with some favoring it (gerontogenes) and others blocking it (genes of longevity pathways). The desire for eternal youth is a constant in the history of humanity. The increased life expectancy in industrialized countries has unfortunately also led to a significant increase in the incidence of age-related diseases (ARDs) such as neurodegenerative diseases, diabetes, cardiovascular diseases, and cancers.
  • 755
  • 27 Dec 2022
Topic Review
Protein-Based Targeting Self-Assembling Nanoparticles for Biomedical Applications
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. The combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in “magic bullet” creation possible, bringing modern biomedicine to a new level. The entry focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. 
  • 755
  • 08 Mar 2023
Topic Review
Insulin-like Growth Factor 1 Receptor
Insulin-like growth factor 1 receptor (IGF1R) is a receptor tyrosine kinase that regulates cell growth and proliferation. Upregulation of the IGF1R pathway constitutes a common paradigm shared with other receptor tyrosine kinases such as EGFR, HER2, and MET in different cancer types, including colon cancer. The main IGF1R signaling pathways are PI3K-AKT and MAPK-MEK. However, different processes, such as post-translational modification (SUMOylation), epithelial-to-mesenchymal transition (EMT), and microenvironment complexity, can also contribute to intrinsic and acquired resistance.
  • 754
  • 12 Oct 2021
Topic Review
Telomeres and Cancer
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation.
  • 754
  • 23 Mar 2022
Topic Review
Chitosan-Based Delivery Systems for Carotenoids
Carotenoids are secondary metabolites present in microorganisms (bacteria, yeast, fungi, and microalgae) and higher plants. They cannot be produced by the human organism. In nature, their principal role is to attract different light wavelengths and transfer their energy to chlorophylls, a function occurring mainly in photosynthetic organisms. Moreover, they can act as photo-protectors, precursors of hormonal substances, antistress secondary metabolites, and attractive agents in plant–insect interaction.
  • 754
  • 27 Sep 2023
Topic Review
Main Characteristics of CircRNAs
Circular RNAs (circRNAs) represent a category of non-coding RNAs (ncRNAs) and constitute functional RNAs that are predetermined not to be translated, but transcribed. CircRNAs are characterized by single-stranded closed-loop structures without 5′-3′-polarity or a polyadenylated tail. The term “circRNA” was first used by Sanger et al. when identifying the structure of viroids.
  • 753
  • 06 Jan 2022
Topic Review
Biology of Cancer Stem Cells
Cancer stem cells have claimed to be one of the most important group of cells for the development of several common cancers as they dictate features, such as resistance to radio- and chemotherapy, metastasis, and secondary tumor formation. Therapies which could target these cells may develop into an effective strategy for tumor eradication and a hope for patients for whom this disease remains uncurable.
  • 753
  • 06 Dec 2022
Topic Review
Biodiversity of Citrus
Citrus, belonging to the Rutaceae family, is a commercial fruit worldwide, and it is mainly recognized for its nutritional, anti-oxidant, and significant medicinal properties. Citruses are a group of multifaceted fruit crops with a rich traditional knowledge, deeply rooted in ethnic culture, and the fruits have been considered to be health-protecting and health-promoting food supplements since ancient times.
  • 753
  • 16 May 2023
Topic Review
The Endocannabinoid System
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases.
  • 752
  • 16 Sep 2021
Topic Review
Application of Prime Editing to Liver Hereditary Diseases
Gene therapy holds tremendous potential in the treatment of inherited diseases. Unlike traditional medicines, which only treat the symptoms, gene therapy has the potential to cure the disease by addressing the root of the problem: genetic mutations. The discovery of CRISPR/Cas9 in 2012 paved the way for the development of those therapies. Improvement of this system led to the recent development of an outstanding technology called prime editing. This system can introduce targeted insertions, deletions, and all 12 possible base-to-base conversions in the human genome. Since the first publication on prime editing in 2019, groups all around the world have worked on this promising technology to develop a treatment for genetic diseases. Liver diseases are currently the most studied field for human gene therapy by prime editing. To date, prime editing has been attempted in preclinical studies for tyrosinemia type 1, alpha-1-antitrypsin deficiency, phenylketonuria, DGAT1-deficiency, bile salt export pump deficiency, liver cancer, and for a liver disease caused by a mutation in the DNMT1 gene.
  • 752
  • 21 Feb 2023
Topic Review
Archaeal DNA Repair
DNA repair is essential across all organisms to maintain levels genomic stability suitable for life. Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity, pH, and radiation that prove intolerable to most life. Many environmental extremes raise the propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair pathways but surprisingly, no DNA repair pathways unique to Archaea have been described.
  • 751
  • 16 Nov 2020
Topic Review
Chronic Inflammation and Radiation-Induced Cystitis
Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers.
  • 751
  • 19 Jan 2021
Topic Review
Nucleases and Co-Factors in DNA Replication Stress Responses
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired.  
  • 751
  • 29 Mar 2022
Topic Review
The Response of Primary Metabolites to Abiotic Stresses
Several environmental stresses, including biotic and abiotic factors, adversely affect the growth and development of crops, thereby lowering their yield. However, abiotic factors, e.g., drought, salinity, cold, heat, ultraviolet radiations (UVr), reactive oxygen species (ROS), trace metals (TM), and soil pH, are extremely destructive and decrease crop yield worldwide. The response of different plant species to such stresses is a complex phenomenon with individual features for several species. Metabolomics is a promising way to interpret biotic and abiotic stress tolerance in plants. The study of metabolic profiling revealed different types of metabolites, e.g., amino acids, carbohydrates, phenols, polyamines, terpenes, etc, which are accumulated in plants. Among all, primary metabolites, such as amino acids, carbohydrates, lipids polyamines, and glycine betaine, are considered the major contributing factors that work as osmolytes and osmoprotectants for plants from various environmental stress factors. Therefore, metabolomics practices are becoming essential and influential in plants by identifying different phytochemicals that are part of the acclimation responses to various stimuli.
  • 751
  • 28 Mar 2023
Topic Review
Nanobody in CAR-T Therapy
Chimeric antigen receptor (CAR) T therapy represents a form of immune cellular therapy with clinical efficacy and a specific target. A typical chimeric antigen receptor (CAR) construct consists of an antigen binding domain, a transmembrane domain, and a cytoplasmic domain. Nanobod-ies have been widely applied as the antigen binding domain of CAR-T due to their small size, optimal stability, high affinity, and manufacturing feasibility. The nanobody-based CAR struc-ture has shown a proven function in more than ten different tumor-specific targets. After being transduced in Jurkat cells, natural killer cells, or primary T cells, the resulting nanobody-based CAR-T or CAR-NK cells demonstrate anti-tumor effects both in vitro and in vivo. Interestingly, anti-BCMA CAR-T modulated by a single nanobody or bi-valent nanobody displays comparable clinical effects with that of single-chain variable fragment (scFv)-modulated CAR-T. The applica-tion of nanobodies in CAR-T therapy has been well demonstrated from bench to bedside and displays great potential in forming advanced CAR-T for more challenging tasks.
  • 750
  • 21 Feb 2021
Topic Review
Xenopus Oocytes to Study Fully-Processed Membrane Proteins
The use of Xenopus oocytes in electrophysiological and biophysical research constitutes a long and successful story, providing major advances to the knowledge of the function and modulation of membrane proteins, mostly receptors, ion channels, and transporters. These cells are capable of correctly expressing heterologous proteins after injecting the corresponding mRNA or cDNA. The Xenopus oocyte has become an outstanding host–cell model to carry out detailed studies on the function of fully-processed foreign membrane proteins after their microtransplantation to the oocyte. 
  • 750
  • 24 Oct 2022
Topic Review
Non-Coding RNAs in Nervous System
Oxidative stress (OS) is defined as an imbalance between free radicals biogenesis and the cell antioxidant capacity to eliminate them. In neurodegenerative diseases, OS play a central role altering mitochondrial metabolism, protein synthesis, and inducing cellular malfunctioning. Most part of the human genome encodes for non-coding protein genes, which are transcribed into non-coding RNA (ncRNA). Most of these ncRNAs are involved transcriptional and post-transcriptional regulation of gene and their deregulation has been linked to diverse neurodegenerative disorders. In this review we compiled most recent evidences reporting a role of main types of ncRNAs in the regulation and management of oxidative stress in Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis. 
  • 749
  • 19 Nov 2020
  • Page
  • of
  • 133
ScholarVision Creations