You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Acute Respiratory Distress Syndrome and Precision Medicine
Acute respiratory distress syndrome (ARDS) is a complex medical disorder that can develop in several primary acute disorders, has a rapid time course, and has several classifications that can reflect either the degree of hypoxemia, the extent of radiographic involvement, or the underlying pathogenesis. The identification of subtypes of patients with ARDS would potentially make precision medicine possible in these patients. This is a very difficult challenge given the heterogeneity in the clinical presentation, pathogenesis, and treatment responses in these patients. The analysis of large databases of patients with acute respiratory failure using statistical methods such as cluster analysis could identify phenotypes that have different outcomes or treatment strategies. However, clinical information available on presentation is unlikely to separate patients into groups that allow for secure treatment decisions or outcome predictions. In some patients, non-invasive positive pressure ventilation provides adequate support through episodes of acute respiratory failure, and the development of specialized units to manage patients with this support might lead to the better use of hospital resources. Patients with ARDS have capillary leak, which results in interstitial and alveolar edema. Early attention to fluid balance in these patients might improve gas exchange and alter the pathophysiology underlying the development of severe ARDS. Finally, more attention to the interaction of patients with ventilators through complex monitoring systems has the potential to identify ventilator dyssynchrony, leading to ventilator adjustments and potentially better outcomes.
  • 1.0K
  • 04 Aug 2023
Topic Review
Treatments under Development of SARS-CoV-2
Coronaviridae is a single-strand, positive-sense, enveloped RNA virus family, circulating in many avian and mammal species hosts. In December 2019, a patient was found to have pneumonia caused by an unknown betacoronavirus. With the unbiased sample sequencing of the patient, a novel coronavirus was identified and named Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2, by the International Committee on Taxonomy of Viruses (ICTV).
  • 996
  • 29 Dec 2022
Topic Review
α1-Antitrypsin Deficiency and SARS-CoV-2 Infection
The most common hereditary disorder in adults, α1-antitrypsin deficiency (AATD), is characterized by reduced plasma levels or the abnormal functioning of α1-antitrypsin (AAT), a major human blood serine protease inhibitor, which is encoded by the SERine Protein INhibitor-A1 (SERPINA1) gene and produced in the liver. Recently, it has been hypothesized that the geographic differences in COVID-19 infection and fatality rates may be partially explained by ethnic differences in SERPINA1 allele frequencies.
  • 993
  • 19 Oct 2021
Topic Review
Stimuli-Responsive Drug Delivery Systems for Lung Cancer
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. Stimuli-responsive drug delivery systems are imparted with unique characteristics and specifically deliver loaded drugs at lung cancer tissues on the basis of internal tumor microenvironment or external stimuli. 
  • 987
  • 22 Feb 2022
Topic Review
NLRP3 Inflammasome
NLRP3 inflammasome sensors are activated in response to both DNA and RNA viruses. Indeed, the NLRP3 inflammasome is essential in defending against viral infections (reviewed detailed in). However, in the steady-state, inflammasome assembly is tightly regulated at a low level to prevent an aberrant pro-inflammatory response and cell death.
  • 985
  • 28 Oct 2021
Topic Review
Hypoxia-Inducible Factor-2α in Idiopathic Pulmonary Fibrosis
Hypoxia and hypoxia-inducible factors (HIFs) are essential in regulating several cellular processes, such as survival, differentiation, and the cell cycle; this adaptation is orchestrated in a complex way. The physiopathology of Idiopathic pulmonary fibrosis (IPF) has been proposed as epithelial-drive fibrosis, with converging genetic and environmental factors. Evidence has shown that these epithelial cell populations, particularly a group of basaloid cells identified by single-cell RNA sequencing (scRNA-seq) and the expression of marker senescence, development, and differentiation, are critical in the early stage of fibrotic lesions.
  • 982
  • 11 Oct 2022
Topic Review
Conceptual Approaches to Protective Lung Ventilation
Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed “baby lung”); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a “protective lung approach” (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an “open lung approach” (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP).
  • 980
  • 31 Jul 2023
Topic Review
Alveolar Edema in COVID-19
The coronavirus disease 2019 (COVID-19) has spread over the world for more than one year. COVID-19 often develops life-threatening hypoxemia. Endothelial injury caused by the viral infection leads to intravascular coagulation and ventilation-perfusion mismatch, alveolar edema also plays a key role in the disease progression. Diffuse alveolar damage (DAD) is the histopathological pattern commonly described in COVID-19. Endothelial barrier disruption induces interstitial flooding via activation of the actin-myosin contractile apparatus. Then alveolar edema leads to hypoxia at the injured alveolar units. Hypoxia in turn inhibits edema fluid clearance, due in part to the disassembly of the keratin intermediate filament network, a fundamental element of the cellular cytoskeleton, therefore destructing the epithelial barrier. Therefore, a long-term hypoxia aggravates the disease by inducing more alveolar edema, which forms a vicious circle.
  • 979
  • 09 Aug 2021
Topic Review
Radiopharmaceutical Labelling for Lung Ventilation/Perfusion PET/CT Imaging
Lung ventilation/perfusion (V/Q) positron emission tomography-computed tomography (PET/CT) is a promising imaging modality for regional lung function assessment. The same carrier molecules as a conventional V/Q scan (i.e., carbon nanoparticles for ventilation and macro aggregated albumin particles for perfusion) are used, but they are labeled with gallium-68 (68Ga) instead of technetium-99m (99mTc). 
  • 964
  • 05 Aug 2022
Topic Review
Osteopontin in Pulmonary Hypertension
Pulmonary hypertension (PH) is a pathological condition with multifactorial etiology, which is characterized by elevated pulmonary arterial pressure and pulmonary vascular remodeling. Accumulating clinical evidence suggests that circulating osteopontin may serve as a biomarker of PH progression, severity, and prognosis, as well as an indicator of maladaptive right ventricular remodeling and dysfunction. Osteopontin modulates a plethora of cellular processes within the pulmonary vasculature, including cell proliferation, migration, apoptosis, extracellular matrix synthesis, and inflammation via binding to various receptors such as integrins and CD44.
  • 964
  • 18 May 2023
Topic Review
COVID-19, Respiratory Diseases & Drug-Drug Interactions
The absence of COVID-19-targeted treatments has led scientist to exploit available scientific evidence for potential efficient drugs that may block biological pathways of SARS-CoV-2 and several molecules have been emerged as promising pharmacological agents. Then again, due to the criticality of the disease, it is important for healthcare providers in COVID-19 clinics to recognize potential drug-drug interactions (DDIs) that may lead to adverse drug reactions (ADRs) and additional burdens in patients' health status from the administration of these agents.
  • 956
  • 17 Dec 2021
Topic Review
Obstructive Sleep Apnea and Cardiovascular Disease
Among the mechanisms which explain the association between obstructive sleep apnea and myocardial infarction (MI), common risk factors include male sex, age, hypertension, obesity, and smoking. However, other direct effects of obstructive sleep apnea merit consideration. The combination of repetitive apnea–hypopnea, hypoxia, and arousal from sleep increases sympathetic activity, which is maintained during wakefulness, thus increasing myocardial oxygen demand. The mechanistic understanding which connects obstructive sleep apnea and cardiovascular disease is poorly understood due to the diverse and complicated elements of obstructive sleep apnea and the multiple other comorbid conditions (especially obesity) impacting cardiovascular health. When obstructive apnea or hypopnea occurs, the upper airway collapses throughout sleep, affecting a complete or partial interruption of airflow even with sustained respiratory struggle. The sympathetic tone is stimulated, and respiratory work increases as opposed to the closed upper airway, increasing negative intrathoracic pressure. Stimulation of the sympathetic tone across the parasympathetic system affects heart rate and blood pressure. Awakening from sleep terminates the asphyxia event, with re-establishing airflow and re-oxygenation but further increased sympathetic tone. Obstructive sleep apnea seems to be correlated with increased levels of inflammatory cytokines. Furthermore, metabolic dysregulation is observed in obstructive sleep apnea patients (with abnormalities in both fat and glucose metabolism. 
  • 953
  • 27 Jun 2022
Topic Review
Type 1 Diabetes Mellitus
Patients with type 1 diabetes mellitus (T1DM) present elevated levels of cytokines including interleukin-1a (IL), IL-1β, IL-2, IL-6 and tumor necrosis factor alpha (TNF-α), suggesting the pre-existence of chronic inflammation, which, in turn, has been considered the major risk factor of adverse COVID-19 outcomes in many cohorts. Even more importantly, oxidative stress is a key player in COVID-19 pathogenesis and determines disease severity. It is well-known that extreme glucose excursions, the prominent feature of T1DM, are a potent mediator of oxidative stress through several pathways including the activation of protein kinase C (PKC) and the increased production of advanced glycation end products (AGEs). Additionally, chronic endothelial dysfunction and the hypercoagulant state observed in T1DM, in combination with the direct damage of endothelial cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may result in endothelial and microcirculation impairment, which contribute to the pathogenesis of acute respiratory syndrome and multi-organ failure. The binding of SARS-CoV-2 to angiotensin converting enzyme 2 (ACE2) receptors in pancreatic b-cells permits the direct destruction of b-cells, which contributes to the development of new-onset diabetes and the induction of diabetic ketoacidosis (DKA) in patients with T1DM. Large clinical studies are required to clarify the exact pathways through which T1DM results in worse COVID-19 outcomes. 
  • 949
  • 19 May 2021
Topic Review
Reactive Oxygen Species and Antioxidative Defense in COPD
The respiratory system is continuously exposed to endogenous and exogenous oxidants. Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the airways, leading to the destruction of lung parenchyma (emphysema) and declining pulmonary function. It is increasingly obvious that reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the progression and amplification of the inflammatory responses related to this disease. First, we described the association between cigarette smoking, the most representative exogenous oxidant, and COPD and then presented the multiple pathophysiological aspects of ROS and antioxidative defense systems in the development and progression of COPD. Second, the relationship between nitric oxide system (endothelial) dysfunction and oxidative stress has been discussed. Third, we have provided data on the use of these biomarkers in the pathogenetic mechanisms involved in COPD and its progression and presented an overview of oxidative stress biomarkers having clinical applications in respiratory medicine, including those in exhaled breath, as per recent observations. Finally, we explained the findings of recent clinical and experimental studies evaluating the efficacy of antioxidative interventions for COPD. Future breakthroughs in antioxidative therapy may provide a promising therapeutic strategy for the prevention and treatment of COPD.
  • 946
  • 15 Dec 2021
Topic Review
Overview of Antiviral Drug Therapy for COVID-19
The vaccine weapon has resulted in being essential in fighting the COVID-19 outbreak, but it is not fully preventing infection due to an alarming spreading of several identified variants of concern. In fact, the recent emergence of variants has pointed out how the SARS-CoV-2 pandemic still represents a global health threat. Moreover, oral antivirals also develop resistance, supporting the need to find new targets as therapeutic tools. However, cocktail therapy is useful to reduce drug resistance and maximize vaccination efficacy. Natural products and metal-drug-based treatments have also shown interesting antiviral activity, representing a valid contribution to counter COVID- 19 outbreak. This report summarizes the available evidence which supports the use of approved drugs and further focuses on significant clinical trials that have investigated the safety and efficacy of repurposing drugs and new molecules in different COVID-19 phenotypes. To date, there are many individuals vulnerable to COVID-19 exhibiting severe symptoms, thus characterizing valid therapeutic strategies for better management of the disease is still a challenge.
  • 938
  • 22 Nov 2022
Topic Review
Stem/Progenitor Cells and Therapy in BPD
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly seen in preterm infants, and is triggered by infection, mechanical ventilation, and oxygen toxicity. Among other problems, lifelong limitations in lung function and impaired psychomotor development may result. Despite major advances in understanding the disease pathologies, successful interventions are still limited to only a few drug therapies with a restricted therapeutic benefit, and which sometimes have significant side effects. As a more promising therapeutic option, mesenchymal stem cells (MSCs) have been in focus for several years due to their anti-inflammatory effects and their secretion of growth and development promoting factors.
  • 930
  • 21 Jul 2023
Topic Review
Pulmonary Tuberculosis and Risk of Lung Cancer
Lung cancer accounts for approximately 18.4% of the total cancer-related deaths, the highest of all cancer types. The prognosis of lung cancer is relatively unfavorable compared to that of other malignancies, and as a prognosis largely depends on the stage of onset, thus, the early diagnosis of lung cancer is very important. Pulmonary tuberculosis (TB) is a known risk factor for lung cancer.
  • 929
  • 16 Feb 2022
Topic Review
Asthma and Environmental Chemicals
Asthma is one of the most common chronic diseases worldwide affecting all age groups from children to the elderly. In addition to other factors such as smoking, air pollution and atopy, some environmental chemicals are shown or suspected to increase the risk of asthma, exacerbate asthma symptoms and cause other respiratory symptoms. 
  • 908
  • 04 Dec 2021
Topic Review
Coronaviruses in Veterinary Medicine
Coronaviruses (CoVs) are known in veterinary medicine affecting several species, and causing respiratory and/or enteric, systemic diseases and reproductive disease in poultry. Animal diseases caused by CoVs may be considered from the following different perspectives: livestock and poultry CoVs cause mainly “population disease”; while in companion animals they are a source of mainly “individual/single subject disease”. Therefore, respiratory CoVs diseases in high-density, large populations of livestock or poultry may be a suitable example for the current SARS-CoV-2/COVID-19 pandemic.
  • 908
  • 05 Jul 2021
Topic Review
Markov Modeling of Acute Respiratory Distress Syndrome
This project focuses on utilizing mathematical Markov chain modeling as a stochastic process to analyze the stages of Acute Respiratory Distress Syndrome (ARDS). ARDS, characterized by a spectrum of severity ranging from floors to death, presents a complex clinical challenge. By employing Markov chain modeling, we aim to provide a structured framework for understanding the dynamic progression of ARDS. Our approach involves constructing a Markov chain that represents the transition of patients through various stages of ARDS, including floors, mild, moderate, severe, and ultimately death. Each stage is associated with specific clinical characteristics and outcomes, forming the basis of our modeling framework. In addition to describing the natural progression of ARDS, our project involves reviewing current clinical guidelines for managing the condition. We propose to examine the impact of each guideline on patient outcomes and the transition through different ARDS stages. By systematically analyzing the effects of various interventions and treatment strategies, we aim to provide insights into optimizing patient care and improving outcomes in ARDS management. Ultimately, this project serves as a comprehensive exploration of ARDS progression, providing healthcare professionals with a valuable framework for thinking about the condition. By integrating mathematical modeling with clinical guidelines, we seek to enhance our understanding of ARDS and contribute to more effective treatment approaches tailored to individual patient needs.
  • 895
  • 06 May 2024
  • Page
  • of
  • 9
Academic Video Service