You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
The Effects of Diets on the “Gut–Brain” Pathways
With depression becoming increasingly prevalent, being closely associated with stress, and many patients exhibiting resistance to current treatments, depression pathophysiology requires further elucidation. Recent research has shown complex bidirectional links between the brain and the gut, and the gut microbiota and the influence of diet is beginning to provide new clues to the complex nature of this disorder. It is well known that diet is a key modulator of gut microbial composition. In humans, good quality plant-based diets such as the Mediterranean diet have been shown to reduce pathogenic bacteria in the gut, increase Bifidobacterium and Clostridium, as well as lower the risk of depression, while poorer quality diets such as the Western diet have been shown to reduce Lactobacillus in the gut, reduce overall gut microbial diversity and have been associated with increased depression risk. Evaluating the effects of diets on the brain-to-gut and gut-to-brain mechanisms in animal models of stress and depression may aid in the elucidation of the pathophysiology of depression and may provide novel therapeutic approaches. 
  • 1.5K
  • 21 Feb 2022
Topic Review
The Identity of Thrombosis
Since “two-path unifying theory” of hemostasis was published, it has been confirmed that hemostasis is blood clotting mechanism forming “hemostatic plug” in bleeding from external and internal bodily injury, and is also thrombosis promoting mechanism in intravascular injury by producing “thrombus”.
  • 1.5K
  • 10 Nov 2022
Topic Review
TRPM7
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a cation channel linked to a cytosolic protein kinase.
  • 1.5K
  • 02 Nov 2020
Topic Review
C/EBPs
CCAAT-enhancer-binding proteins (C/EBPs) is a family of six structurally homologous transcription factors that promote the expression of genes involved in different cellular responses, such as proliferation, growth, and differentiation. These transcription factors control the differentiation of several cell types, and have key roles in regulating cellular proliferation, through interaction with cell cycle proteins. The molecular structure of C/EBPs and their ability to interact with a multitude of factors determine their complex functions in different cells. In fact, C/EBPs can be activated or inhibited by a variety of intracellular or extracellular signals. In addition, post-translational modifications and interaction with other proteins can regulate their expression and activity in a complex manner. C/EBPs can activate or repress several classes of genes implicated in cell differentiation, metabolism, inflammation, and immune response. Moreover, C/EBPs play an important role in cancer progression and metastasis, showing both pro-oncogenic and onco-suppressor functions. Interestingly, the same isotype of C/EBP can exhibit both of these opposite functions. This “Janus” role of C/EBPs in cancer could depend on their particular position at the crossroads between proliferation and differentiation. Specific conditions such as cell type, microenvironment, type of heterodimerization, or interaction with different regulatory proteins can tip the balance towards pro- or anti-oncogenic action.
  • 1.5K
  • 13 Sep 2021
Topic Review
RT-qPCR HEV RNA
Hepatitis E virus (HEV) is a non-enveloped single-stranded positive-sense RNA virus, belonging to the Hepeviridae family, resistant to environmental conditions, and transmitted by the consumption of contaminated water. This virus is responsible for both sporadic and epidemic outbreaks, leading to thousands of infections per year in several countries, and is thus considered an emerging disease in Europe and Asia. This study refers to a survey in Portugal during 2019, targeting the detection and eventual quantification of enteric viruses in samples from surface and drinking water. Samples positive for HEV RNA were recurrently found by reverse transcription quantitative PCR (RT-qPCR), in both types of matrix. Our results evidenced the existence of samples positive either for HEV RNA (77.8% in surface water and 66.7% in drinking water) or for infectious HEV (23.0% in surface water and 27.7% in drinking water). These results highlight the need for effective virological control of water for human consumption and activities.
  • 1.5K
  • 04 Feb 2022
Topic Review
Congenital Lung Malformations
Congenital lung malformations arise during development and include numerous anatomical anomalies of the lung and respiratory tree. They are usually detected prenatally by ultrasonography and comprise congenital pulmonary airway malformation (CPAM), bronchopulmonary sequestration (BPS), bronchogenic cysts (BC), and more rarely bronchial atresia, congenital lobar emphysema (CLE), and congenital tracheal obstruction. This entry focuses on the molecular and genetic determinants of the most frequent anomalies: CPAM, BPS, and BC. Congenital diaphragmatic hernia (CDH) is not usually included in this group; however, since the lung is also highly affected in this condition, we have also incorporated evidence related to lung hypoplasia.
  • 1.5K
  • 30 Nov 2021
Topic Review
Human Paraoxonase-2 (PON2)
PON1, PON2, and PON3 belong to a family of lactone hydrolyzing enzymes endowed with various substrate specificities. Among PONs, PON2 shows the highest hydrolytic activity toward many acyl-homoserine lactones (acyl-HL) involved in bacterial quorum-sensing signaling. Accordingly, defense against pathogens, such as Brevundimonas aeruginosa (B. aeruginosa), was postulated to be the principal function of PON2. Moreover, findings have highlighted the importance of PON2 in oxidative stress control, inhibition of apoptosis, and the progression of various types of malignancies.
  • 1.5K
  • 17 Jun 2022
Topic Review
Inhibitors of Cyclin-Dependent Kinases
Protein phosphorylation is a necessary mechanism to drive numerous cellular processes such as cell division, migration, differentiation and programmed cell death. This process is regulated by many enzymes, including cyclin-dependent kinases (CDKs) which phosphorylate proteins on their serine and threonine amino acid residues. The 20 members of CDK family known to this day regulate the cell cycle, transcription and splicing.
  • 1.5K
  • 28 Apr 2021
Topic Review
Cardioprotective Role of Vascular Endothelial Growth Factor B
Coronary heart disease (CHD) is the leading cause of death around the world. Based on the roles of vascular endothelial growth factor (VEGF) family members to regulate blood and lymphatic vessels and metabolic functions, several therapeutic approaches have been attempted. However proangiogenic therapies based on classical VEGF-A have been disappointing. Therefore, it has become important to focus on other VEGFs, like VEGF-B, which is a novel member of the VEGF family. 
  • 1.5K
  • 03 Jan 2023
Topic Review
The Endocannabinoid System (ECS)
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. 
  • 1.5K
  • 20 Apr 2021
Topic Review
Intracellular pH Regulation in Muscle
Here we talk about the effects of acidosis on insulin signaling and glucose uptake in skeletal muscle and whether correcting defects that maintain [pH]i within the muscle, such as carnosine, could alleviate insulin resistance improve insulin responses during metabolic syndrome.
  • 1.5K
  • 22 Oct 2020
Topic Review
Antibacterial Secondary Metabolites from Basidiomycetes
Fungi are a rich source of secondary metabolites with several pharmacological activities such as antifungal, antioxidant, antibacterial and anticancer to name a few. Due to the large number of diverse structured chemical compounds they produce, fungi from the phyla Ascomycota, Basidiomycota and Muccoromycota have been intensively studied for isolation of bioactive compounds. Basidiomycetes-derived secondary metabolites are known as a promising source of antibacterial compounds with activity against Gram-positive bacteria. The continued emergence of antimicrobial resistance (AMR) poses a major challenge to patient health as it leads to higher morbidity and mortality, higher hospital-stay duration and substantial economic burden in global healthcare sector. One of the key culprits for AMR crisis is Staphylococcus aureus causing community-acquired infections as the pathogen develops resistance towards multiple antibiotics. The recent emergence of community strains of S. aureus harbouring methicillin-resistant (MRSA), vancomycin-intermediate (VISA) and vancomycin-resistant (VRSA) genes associated with increased virulence is challenging. Despite the few significant developments in antibiotic research, successful MRSA therapeutic options are still needed to reduce the use of scanty and expensive second-line treatments. This paper provides an overview of findings from various studies on antibacterial secondary metabolites from basidiomycetes, with a special focus on antistaphylococcal activity.
  • 1.5K
  • 20 Aug 2021
Topic Review
Coenzyme Q10 Analogues
Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation.
  • 1.5K
  • 16 Apr 2021
Topic Review
Antibacterial Quinolones
The antibacterial quinolones (QNs) and further developed fluoroquinolones (FQNs) represent one of the most important classes of antimicrobial agents from many points of view: activity spectrum, administrations, and tissue distribution, being primarily used to fight bacterial infections.
  • 1.5K
  • 08 Sep 2022
Topic Review
Molecular Mechanisms of Muscle Fatigue
Muscle fatigue (MF) declines the capacity of muscles to complete a task over time at a constant load. MF is usually short-lasting, reversible, and is experienced as a feeling of tiredness or lack of energy. The leading causes of short-lasting fatigue are related to overtraining, undertraining/deconditioning, or physical injury. Conversely, MF can be persistent and more serious when associated with pathological states or following chronic exposure to certain medication or toxic composites. In conjunction with chronic fatigue, the muscle feels floppy, and the force generated by muscles is always low, causing the individual to feel frail constantly. The leading cause underpinning the development of chronic fatigue is related to muscle wasting mediated by aging, immobilization, insulin resistance (through high-fat dietary intake or pharmacologically mediated Peroxisome Proliferator-Activated Receptor (PPAR) agonism), diseases associated with systemic inflammation (arthritis, sepsis, infections, trauma, cardiovascular and respiratory disorders (heart failure, chronic obstructive pulmonary disease (COPD))), chronic kidney failure, muscle dystrophies, muscle myopathies, multiple sclerosis, and, more recently, coronavirus disease 2019 (COVID-19). The primary outcome of displaying chronic muscle fatigue is a poor quality of life. 
  • 1.5K
  • 29 Nov 2021
Topic Review
DNA 6mA and RNA m6A Methylation
Epigenetic methylation has been shown to play an important role in transcriptional regulation and disease pathogenesis. Recent advancements in detection techniques have identified DNA N6-methyldeoxyadenosine (6mA) and RNA N6-methyladenosine (m6A) as methylation modifications at the sixth position of adenine in DNA and RNA, respectively.
  • 1.5K
  • 22 Nov 2023
Topic Review
Heavy Metals Bioremediation
Cadmium (Cd), chromium (Cr) and lead (Pb) are heavy metals that have been classified as priority pollutants in aqueous environment while methane-oxidizing bacteria as a biofilter arguably consume up to 90% of the produced methane in the same aqueous environment before it escapes into the atmosphere. However, the underlying kinetics and active methane oxidizers are poorly understood for the hotspot of epipelon that provides a unique micro-ecosystem containing diversified guild of microorganisms including methane oxidizers for potential bioremediation of heavy metals. In the present study, the Pb2+, Cd2+and Cr6+ bioremediation potential of epipelon biofilm was assessed under both high (120,000 ppm) and near-atmospheric (6 ppm) methane concentrations. Epipelon biofilm demonstrated a high methane oxidation activity following microcosm incubation amended with a high concentration of methane, accompanied by the complete removal of 50 mg L−1 Pb2+ and 50 mg L−1 Cd2+ (14 days) and partial (20%) removal of 50 mg L−1 Cr6+ after 20 days. High methane dose stimulated a faster (144 h earlier) heavy metal removal rate compared to near-atmospheric methane concentrations. DNA-based stable isotope probing (DNA-SIP) following 13CH4 microcosm incubation revealed the growth and activity of different phylotypes of methanotrophs during the methane oxidation and heavy metal removal process. High throughput sequencing of 13C-labelled particulate methane monooxygenase gene pmoA and 16S rRNA genes revealed that the prevalent active methane oxidizers were type I affiliated methanotrophs, i.e., Methylobacter. Type II methanotrophs including Methylosinus and Methylocystis were also labeled only under high methane concentrations. These results suggest that epipelon biofilm can serve as an important micro-environment to alleviate both methane emission and the heavy metal contamination in aqueous ecosystems with constant high methane fluxes.
  • 1.5K
  • 27 Oct 2020
Topic Review
Bone Resorption
Bone resorption, the process by which bone is broken down to liberate products needed by the body’s metabolism, most prominently, but not exclusively, calcium, is incompletely understood.
  • 1.5K
  • 29 Jan 2022
Topic Review
Dermatan Sulfate in Tissue Development
The crucial roles of dermatan sulfate (DS) have been demonstrated in tissue development of the cutis, blood vessels, and bone through construction of the extracellular matrix and cell signaling. DS classically exerts physiological functions via interaction with collagens, growth factors, and heparin cofactor-II.
  • 1.5K
  • 14 Jul 2022
Topic Review
NMR-Based Metabolomics in Metal-Based Drug Research
Thanks to recent advances in analytical technologies and statistical capabilities, the application field of metabolomics has increased significantly. Currently, this approach is used to investigate biological substrates looking for metabolic profile alterations, diseases markers, and drug effects. Due to the low work-up required, high data reproducibility, and high throughput, NMR spectroscopy is an optimal detection technique in metabolomics studies.  The use of NMR-based metabolomic approaches in the investigation of a metal drug action mechanism or for assessing tumour response to anticancer metal agents is a recent, fast-growing tool. Only in recent years has the NMR-based metabolomic approach been extended to investigate the cell metabolic alterations induced by metal-based antitumor drug administration. The future perspectives are even more interesting.  The use of a metabolomics approach was very effective in assessing tumor response to drugs and providing insights into the mechanism of action and resistance. Therefore, metabolomics may open new perspectives into the development of metal-based drugs. In particular, it has been shown that NMR-based in vitro metabolomics is a powerful tool for detecting variations of the cell metabolites induced by the metal drug exposure, thus offering also the possibility of identifying specific markers for in vivo monitoring of tumor responsiveness to anticancer treatments. Moreover, NMR-based metabolomics could also play an important role in clinical trials, preventing or reducing unwanted side effects of metal anticancer drugs by the early detection of metabolic dysfunctions in bio-fluids. 
  • 1.5K
  • 15 Feb 2021
  • Page
  • of
  • 133
Academic Video Service