You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Epidermal Growth Factor-Like Protein-7
Cancer growth and metastasis require interactions with the extracellular matrix (ECM), which is home to many biomolecules that support the formation of new vessels and cancer growth. One of these biomolecules is epidermal growth factor-like protein-7 (EGFL7). EGFL7 alters cellular adhesion to the ECM and migratory behavior of tumor and immune cells contributing to tumor metastasis. EGFL7 is engaged in the formation of new vessels and changes in ECM stiffness. One of its binding partners on the endothelial and cancer cell surface is beta 3 integrin. Beta 3 integrin pathways are under intense investigation in search of new therapies to kill cancer cells. All these properties enable EGFL7 to contribute to drug resistance. 
  • 1.0K
  • 10 Mar 2021
Topic Review
Phytophthora sansomeana
Phytophthora sansomeana has been shown to be a causal agent of Phytophthora root rot (PRR) in soybean in addition to P. sojae. The emergence and spread of a second pathogen causing PRR poses a significant threat to soybean production.
  • 1.0K
  • 20 Sep 2022
Topic Review
The Role of Outer Membrane Vesicles against Bacteria
Gram-negative bacteria are resistant to many commercialized antibiotics. The outer membrane (OM) of Gram-negative bacteria prevents the entry of such antibiotics. Outer membrane vesicles (OMV) are naturally released from the OM of Gram-negative bacteria for a range of purposes, including competition with other bacteria. OMV may carry, as part of the membrane or lumen, molecules with antibacterial activity. Such OMV can be exposed to and can fuse with the cell surface of different bacterial species. 
  • 1.0K
  • 07 Feb 2023
Topic Review
Omics to Study Fungal Plant Pathogens
In plant pathology, multi-omics (genomics, transcriptomics, proteomics, and metabolomics) can help mainly in the prevention and management of diseases. The omics have been applied to elucidate the function of genes and the structure of the genome to provide insights into gene and protein expression and to understand the metabolic profiling of both the host and the pathogen during an infection process. The application of omics in the genus Diaporthe is still poorly explored, although metabolomics has been widely applied to explore endophytic Diaporthe natural products for their potential applications in pharmacology. Although the genus Diaporthe comprises important plant pathogens and endophytes, these species also have the ability to switch lifestyles.
  • 1.0K
  • 29 Mar 2023
Topic Review
Metal(loid) Bioremediation by Microbial Polymers
Environmental pollution arising from metal(loid)s is a result of industrialization, and has led to serious health issues. Conventional methods of metal(loid) removal often result in generation of secondary waste which is toxic to the environment. Bioremediation in combination with physicochemical techniques offer an excellent and effective means of removal. The use of secondary metabolites and extracellular polymers produced by microorganisms is an effective procedure employed in metal(loid) sequestration and reduction in toxicity of contaminated environments. These biopolymers have different chemical structures and have shown varied selectivity to different metal(loid)s. 
  • 1.0K
  • 09 Jan 2023
Topic Review
New Antimicrobial Oleanonic Acid Polyamine Conjugates
The series of 21 oleanolic acid derivatives containing di- and polyamine fragments at position C3 and C28 was synthesized and evaluated for their antimicrobial activities against both Gram-positive and Gram-negative bacterial. Almost all series presented good to moderate Minimum Inhibitory Concentrations (MIC) against Gram-positive S. aureus, S. faecalis and B. cereus bacteria, moreover compounds possess important antimicrobial activities against Gram-negative E. coli, P. aeruginosa, S. enterica, and EA289 bacteria with MICs ranging from 6.25 to 200 µg/mL. The SAR data showed that the nature of the polyamine fragment, as well as differences in the structure of oleanolic acid plays an important role in the potential activities of tested compounds. The testing of the ability to restore the antibiotic activity of doxycycline and erythromycin at a 2 µg/mL concentration in a synergistic assay showed that only Mannich base with spermine fragment 6 lead to a moderate improvement in terms of antimicrobial activities of the different selected combinations against both P. aeruginosa and E. coli. The study of the mechanism of action of the most important compound in this series (amide 2i derived from N-methyl-norspermidine) showed the effect of disruption of the outer bacterial membrane of P. aeruginosa PA01 cells. Computational ADMET profiling renders compound 2i as a suitable starting point for pharmacokinetic optimization.
  • 1.0K
  • 19 Jan 2022
Topic Review
Phages in Food Industry Biocontrol
Bacteriophages are ubiquitous in nature and their use is a current promising alternative in biological control. Multidrug resistant (MDR) bacterial strains are present in the livestock industry and phages are attractive candidates to eliminate them and their biofilms. 
  • 1.0K
  • 20 Jul 2021
Topic Review
Membrane Efflux Pumps of Pathogenic Vibrio Species
Infectious diseases caused by bacterial species of the Vibrio genus have had considerable significance upon human health for centuries. V. cholerae is the causative microbial agent of cholera, a severe ailment characterized by profuse watery diarrhea, a condition associated with epidemics, and seven great historical pandemics. V. parahaemolyticus causes wound infection and watery diarrhea, while V. vulnificus can cause wound infections and septicemia. Species of the Vibrio genus with resistance to multiple antimicrobials have been a significant health concern for several decades. Mechanisms of antimicrobial resistance machinery in Vibrio spp. include biofilm formation, drug inactivation, target protection, antimicrobial permeability reduction, and active antimicrobial efflux. Integral membrane-bound active antimicrobial efflux pump systems include primary and secondary transporters, members of which belong to closely related protein superfamilies. The RND (resistance-nodulation-division) pumps, the MFS (major facilitator superfamily) transporters, and the ABC superfamily of efflux pumps constitute significant drug transporters for investigation.
  • 1.0K
  • 11 Mar 2022
Topic Review
Wolbachia
Wolbachia is an intracellular bacterium that occurs in arthropods and in filarial worms. First described nearly a century ago in the reproductive tissues of Culex pipiens mosquitoes, Wolbachia is now known to occur in roughly 50% of insect species, and has been considered the most abundant intracellular bacterium on earth. In insect hosts, Wolbachia modifies reproduction in ways that facilitate spread of the microbe within the host population, but otherwise is relatively benign. In this “gene drive” capacity, Wolbachia provides a tool for manipulating mosquito populations. In mosquitoes, Wolbachia causes cytoplasmic incompatibility, in which the fusion of egg and sperm nuclei is disrupted, and eggs fail to hatch, depending on the presence/absence of Wolbachia in the parent insects. Recent findings demonstrate that Wolbachia from infected insects can be transferred into mosquito species that do not host a natural infection. When transinfected into Aedes aegypti, an important vector of dengue and Zika viruses, Wolbachia causes cytoplasmic incompatibility and, in addition, decreases the mosquito’s ability to transmit viruses to humans. 
  • 1.0K
  • 31 Aug 2021
Topic Review
Biofilm Survival Strategies in Chronic Wounds
Bacterial biofilms residing in chronic wounds are thought to have numerous survival strategies, making them extremely difficult to eradicate and resulting in long-term infections. However, much of people's knowledge regarding biofilm persistence stems from in vitro models and experiments performed in vivo in animal models. While the knowledge obtained from such experiments is highly valuable, its direct translation to the human clinical setting should be undertaken with caution. 
  • 1.0K
  • 27 Apr 2022
Topic Review
Syndecan-4
Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta’s spike protein shift the protein towards a net positive electrostatic potential. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than ACE2. Cellular studies showed that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. In addition to the attachment to the polyanionic heparan sulfate chains, the Delta spike’s molecular interactions with syndecan-4 also involve syndecan-4’s cell-binding domain that mediates cell-to-cell adhesion. Exogenously added heparin or syndecan-4 knockdown efficiently blocks the Delta variant’s cellular entry. A profound understanding of syndecan-4-mediated endocytosis enables the development of molecularly targeted yet simple strategies to reduce the Delta variant’s spread.
  • 1.0K
  • 20 Jan 2022
Topic Review
Therapeutic Applications of Bacteriophages in the Gut Microbiota
Bacteriophages (phages) are nano-sized viruses characterized by their inherent ability to live off bacteria. They utilize diverse mechanisms to absorb and gain entry into the bacterial cell wall via the release of viral genetic material, which uses the replication mechanisms of the host bacteria to produce and release daughter progeny virions that attack the surrounding host cells. They possess specific characteristics, including specificity for particular or closely related bacterial species. They have many applications, including as potential alternatives to antibiotics against multi-resistant bacterial pathogens and as control agents in bacteria-contaminated environments. They are ubiquitously abundant in nature and have diverse biota, including in the gut. Gut microbiota describes the community and interactions of microorganisms within the intestine. As with bacteria, parasitic bacteriophages constantly interact with the host bacterial cells within the gut system and have obvious implications for human health.
  • 1.0K
  • 17 Oct 2023
Topic Review
Motility of the Zoonotic Spirochete Leptospira
If a bacterium has motility, it will use the ability to survive and thrive. For many pathogenic species, their motilities are a crucial virulence factor. The form of motility varies among the species. Some use flagella for swimming in liquid, and others use the cell-surface machinery to move over solid surfaces. Spirochetes are distinguished from other bacterial species by their helical or flat wave morphology and periplasmic flagella (PFs). It is believed that the rotation of PFs beneath the outer membrane causes transformation or rolling of the cell body, propelling the spirochetes. Interestingly, some spirochetal species exhibit motility both in liquid and over surfaces, but it is not fully unveiled how the spirochete pathogenicity involves such amphibious motility.
  • 1.0K
  • 02 Mar 2022
Topic Review
Angiotensin II Type I Receptor (AT1R)
AT1R has a major role in RAS by being involved in several physiological events including blood pressure control and electrolyte balance. Following SARS-CoV-2 infection, pathogenic episodes generated by the vasoconstriction, proinflammatory, profibrotic, and prooxidative consequences of the Ang II–AT1R axis activation are accompanied by a hyperinflammatory state (cytokine storm) and an acute respiratory distress syndrome (ARDS). AT1R, a member of the G protein-coupled receptor (GPCR) family, modulates Ang II deleterious effects through the activation of multiple downstream signaling pathways, among which are MAP kinases (ERK 1/2, JNK, p38MAPK), receptor tyrosine kinases (PDGF, EGFR, insulin receptor), and nonreceptor tyrosine kinases (Src, JAK/STAT, focal adhesion kinase (FAK)), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.
  • 1.0K
  • 12 Apr 2022
Topic Review
Candida auris
Candida auris is a multidrug-resistant species associated with high morbidity and mortality in immunocompromised individuals worldwide.
  • 1.0K
  • 04 Aug 2021
Topic Review
Cyclosporiasis Clinical Diagnosis
Cyclospora cayetanensis is an intestinal coccidian parasite transmitted to humans through the consumption of oocysts in fecally contaminated food and water. Infection is found worldwide and is highly endemic in tropical and subtropical regions with poor sanitation. Disease in developed countries is usually observed in travelers and in seasonal outbreaks associated with imported produce from endemic areas. Recently, summertime outbreaks in the United States have also been linked to locally grown produce. Cyclosporiasis causes a diarrheal illness which may be severe in infants, the elderly, and immunocompromised individuals. The increased adoption of highly sensitive molecular diagnostic tests, including commercially available multiplex panels for gastrointestinal pathogens, has facilitated the detection of infection and likely contributed to the increased reports of cases in developed countries. 
  • 1.0K
  • 22 Sep 2021
Topic Review
Grape Ripe Rot Caused by the Colletotrichum Complex
Grape ripe rot, which is predominantly caused by the Colletotrichum species, presents a growing threat to global grape cultivation. This threat is amplified by the increasing populations of the Colletotrichum species in response to warmer climates.
  • 1.0K
  • 21 Aug 2023
Topic Review
Malassezia spp. and Hosts
Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host–microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models.
  • 1.0K
  • 21 Oct 2020
Topic Review
Epidemiology of Human Salmonellosis
Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Among Salmonella infections, NTS infections are the most common cause of self-limiting illness. Enteric fever caused by typhoid Salmonella has a high mortality and morbidity rate and occurs more frequently in developing nations.
  • 1.0K
  • 06 May 2023
Topic Review
Tick Protease Inhibitors
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action.
  • 999
  • 10 Feb 2021
  • Page
  • of
  • 51
Academic Video Service