Topic Review
Coronavirus
Coronaviruses are indeed a huge family of viruses that are found both in humans and animals. Seven different types have been identified, including the ones that caused COVID-19 and the SARS and MERS illnesses.
  • 572
  • 09 Nov 2022
Topic Review
Anchor Assignment in Object Detection
Due to the advantages of edge computing in terms of latency, bandwidth, and security, it provides more effective technical support for many applications that require real-time security. A security system is one of the applications for edge computing in Internet of Things (IoT), where the core end device is a camera for surveillance and smart security. Smart security based on object detection is one of the important applications of edge computing in IoT. Anchors in object detection refer to points on the feature map, which can be used to generate anchor boxes and serve as training samples. The training samples in object detection use anchors, which are feature points on the feature map that can be used for classification and regression.
  • 572
  • 28 Jul 2023
Topic Review
AI for Addressing Algorithmic Bias in Job Hiring
More businesses are using artificial intelligence (AI) in curriculum vitae (CV) screening. While the move improves efficiency in the recruitment process, it is vulnerable to biases, which have adverse effects on organizations and the broader society. It recommends the need for collaboration between machines and humans to enhance the fairness of the hiring process. The results can help AI developers make algorithmic changes needed to enhance fairness in AI-driven tools. This will enable the development of ethical hiring tools, contributing to fairness in society.
  • 572
  • 20 Feb 2024
Topic Review
Traditional Computer-Vision Methods Implemented in Sports
Automatic analysis of video in sports is a possible solution to the demands of fans and professionals for various kinds of information. Analyzing videos in sports has provided a wide range of applications, which include player positions, extraction of the ball’s trajectory, content extraction, and indexing, summarization, detection of highlights, on-demand 3D reconstruction, animations, generation of virtual view, editorial content creation, virtual content insertion, visualization and enhancement of content, gameplay analysis and evaluations, identifying player’s actions, referee decisions and other fundamental elements required for the analysis of a game. Recent developments in video analysis of sports have a focus on the features of computer vision techniques, which are used to perform certain operations for which these are assigned, such as detailed complex analysis such as detection and classification of each player based on their team in every frame or by recognizing the jersey number to classify players based on their team will help to classify various events where the player is involved. In higher-level analysis, such as tracking the player or ball, many more such evaluations are to be considered for the evaluation of a player’s skills, detecting the team’s strategies, events and the formation of tactical positions such as midfield analysis in various sports such as soccer, basketball, and also various sports vision applications such as smart assistants, virtual umpires, assistance coaches. A higher-level semantic interpretation is an effective substitute, especially in situations when reduced human intervention and real-time analysis are desired for the exploitation of the delivered system outputs.
  • 571
  • 19 May 2022
Topic Review
DetectFormer
Object detection plays a vital role in autonomous driving systems, and the accurate detection of surrounding objects can ensure the safe driving of vehicles. A category-assisted transformer object detector called DetectFormer for autonomous driving. The proposed object detector can achieve better accuracy compared with the baseline. Specifically, ClassDecoder is assisted by proposal categories and global information from the Global Extract Encoder (GEE) to improve the category sensitivity and detection performance. This fits the distribution of object categories in specific scene backgrounds and the connection between objects and the image context. Data augmentation is used to improve robustness and attention mechanism added in backbone network to extract channel-wise spatial features and direction information.
  • 569
  • 15 Jul 2022
Topic Review
Hybrid Digital Food Twin
Food production is highly complex due to the various chemo-physical and biological processes that must be controlled to transform ingredients into final products. Further, production processes must be adapted to the variability of the ingredients, e.g., due to seasonal fluctuations of raw material quality. Digital twins are known from Industry 4.0 as a method to model, simulate, and optimize processes. Such a digital food twin has to consider the changes within the food due to micro-biological, chemical, and physical processes. Consequently, researchers propose the concept of a hybrid digital twin, which integrates simulation and data science (i.e., machine learning) to combine a data-driven perspective, simulations, and scientific models to describe the food product and the food processing process. 
  • 569
  • 16 Sep 2022
Topic Review
Categorical Exploratory Data Analysis
Categorical exploratory data analysis (CEDA) is demonstrated to provide new resolutions for two topics: multiclass classification (MCC) with one single categorical response variable and response manifold analytics (RMA) with multiple response variables. 
  • 567
  • 08 Jul 2021
Topic Review
Computational Thinking
Computational Thinking (CT) has been widely regarded as an essential ability to solve problems by applying basic knowledge of computer science in technological societies. Initially, CT was defined as using the fundamental concepts of computer science to solve problems, design systems, and understand human behaviors.
  • 566
  • 28 Oct 2021
Topic Review
Artificial Pancreas Control Strategies for Type 1 Diabetes
This entry presents a comprehensive survey about the fundamental components of the artificial pancreas (AP) system including insulin administration and delivery, glucose measurement (GM), and control strategies/algorithms used for type 1 diabetes mellitus (T1DM) treatment and control. 
  • 566
  • 17 Dec 2021
Topic Review
Applications in Computational Pathology
Deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial networks (GANs), and graph neural networks (GNNs) have, over the past decade, changed the accuracy of prediction in many diverse fields. In recent years, the application of deep learning techniques in computer vision tasks in pathology has demonstrated extraordinary potential in assisting clinicians, automating diagnoses, and reducing costs for patients.
  • 566
  • 19 Apr 2022
Topic Review
Methods for Imaging and Evaluation of Scoliosis
Scoliosis is defined as a three-dimensional spinal deformity consisting of a lateral curvature greater than 10 degrees with rotation of the vertebrae within the curve. It can be identified as congenital, neuromuscular or idiopathic. Idiopathic scoliosis (IS) can be further classified by age of onset: infantile (birth to two years), juvenile (three to nine years), and adolescent (10 years and older). It is the most common pediatric musculoskeletal disorder that causes a three-dimensional (3D) spinal deformity. The deformity is always 3D because it also involves an axial rotation of the vertebrae, not just displacement and rotation in the frontal plane. Adolescent IS is the most common form because the spinal deformity evolves during periods of significant physical growth. IS is diagnosed when other etiological factors cannot be identified, such as congenital neurological or musculoskeletal anomalies, or inflammatory or demyelinating processes leading to primary or secondary motor neuron damage (myotonia, myopathy, etc.).
  • 565
  • 15 Feb 2022
Topic Review
Sign Language Recognition
Recognition of hand motion capture is an interesting topic. Hand motion can represent many gestures. In particular, sign language plays an important role in the daily lives of hearing-impaired people. Sign language recognition is essential in hearing-impaired people’s communication. Wearable data gloves and computer vision are partially complementary solutions. However, sign language recognition using a general monocular camera suffers from occlusion and recognition accuracy issues.
  • 565
  • 08 Dec 2023
Topic Review
Forecasting Pollution in Urban Area
Particulate air pollution has aggravated cardiovascular and lung diseases. Accurate and constant air quality forecasting on a local scale facilitates the control of air pollution and the design of effective strategies to limit air pollutant emissions.  Accurate and constant air quality forecasting on a local scale facilitates the control of air pollution and the design of effective strategies to limit air pollutant emissions. CAMS provides 4-day-ahead regional (EU) forecasts in a 10 km spatial resolution, adding value to the Copernicus EO and delivering open-access consistent air quality forecasts. In this work, we evaluate the CAMS PM forecasts at a local scale against in-situ measurements, spanning 2 years, obtained from a network of stations located in an urban coastal Mediterranean city in Greece. Moreover, we investigate the potential of modelling techniques to accurately forecast the spatiotemporal pattern of particulate pollution using only open data from CAMS and calibrated low-cost sensors. Specifically, we compare the performance of the Analog Ensemble (AnEn) technique and the Long Short-Term Memory (LSTM) network in forecasting PM2.5 and PM10 concentrations for the next four days, at 6 h increments, at a station level. The results show an underestimation of PM2.5 and PM10 concentrations by a factor of 2 in CAMS forecasts during winter, indicating a misrepresentation of anthropogenic particulate emissions such as wood-burning, while overestimation is evident for the other seasons. Both AnEn and LSTM models provide bias-calibrated forecasts and capture adequately the spatial and temporal variations of the ground-level observations reducing the RMSE of CAMS by roughly 50% for PM2.5 and 60% for PM10. AnEn marginally outperforms the LSTM using annual verification statistics. The most profound difference in the predictive skill of the models occurs in winter, when PM is elevated, where AnEn is significantly more efficient. Moreover, the predictive skill of AnEn degrades more slowly as the forecast interval increases. Both AnEn and LSTM techniques are proven to be reliable tools for air pollution forecasting, and they could be used in other regions with small modifications.
  • 563
  • 16 Jul 2021
Topic Review
Computer Vision Technology for Physical Exercise Monitoring
Physical activity is movement of the body or part of the body to make the muscles more active and to lose the energy from the body. Regular physical activity in the daily routine is very important to maintain good physical and mental health. It can be performed at home, a rehabilitation center, gym, etc., with a regular monitoring system. How long and which physical activity is essential for specific people is very important to know because it depends on age, sex, time, people that have specific diseases, etc. Therefore, it is essential to monitor physical activity either at a physical activity center or even at home. Physiological parameter monitoring using contact sensor technology has been practiced for a long time.
  • 563
  • 06 Feb 2023
Topic Review
Automatic Diagnosis of Glaucoma from Retinal Images
Glaucoma is characterized by increased intraocular pressure and damage to the optic nerve, which may result in irreversible blindness. The drastic effects of this disease can be avoided if it is detected at an early stage. However, the condition is frequently detected at an advanced stage in the elderly population. Therefore, early-stage detection may save patients from irreversible vision loss. The manual assessment of glaucoma by ophthalmologists includes various skill-oriented, costly, and time-consuming methods. Several techniques are in experimental stages to detect early-stage glaucoma, but a definite diagnostic technique remains elusive. The detection technique involves the identification of patterns from the retinal images that are often overlooked by clinicians. The proposed approach uses the gray channels of fundus images and applies the data augmentation technique to create a large dataset of versatile fundus images to train the convolutional neural network model. Using the ResNet-50 architecture, the proposed approach achieved excellent results for detecting glaucoma on the G1020, RIM-ONE, ORIGA, and DRISHTI-GS datasets. Researchers obtained a detection accuracy of 98.48%, a sensitivity of 99.30%, a specificity of 96.52%, an AUC of 97%, and an F1-score of 98% by using the proposed model on the G1020 dataset. The proposed model may help clinicians to diagnose early-stage glaucoma with very high accuracy for timely interventions.
  • 561
  • 25 May 2023
Topic Review
Self-Supervised Learning (SSL) in Deep Learning Contexts
Self-supervised learning (SSL) is a potential deep learning (DL) technique that uses massive volumes of unlabeled data to train neural networks. SSL techniques have evolved in response to the poor classification performance of conventional and even modern machine learning (ML) and DL models of enormous unlabeled data produced periodically in different disciplines. However, the literature does not fully address SSL’s practicalities and workabilities necessary for industrial engineering and medicine. Accordingly, this thorough review is administered to identify these prominent possibilities for prediction, focusing on industrial and medical fields. This extensive survey, with its pivotal outcomes, could support industrial engineers and medical personnel in efficiently predicting machinery faults and patients’ ailments without referring to traditional numerical models that require massive computational budgets, time, storage, and effort for data annotation. 
  • 561
  • 18 Mar 2024
Topic Review
Computer-Assisted Tissue Image Analysis in Minimally Invasive Surgery
Computer-assisted tissue image analysis (CATIA) enables an optical biopsy of human tissue during minimally invasive surgery and endoscopy. Thus far, it has been implemented in gastrointestinal, endometrial, and dermatologic examinations that use computational analysis and image texture feature systems.
  • 560
  • 21 Dec 2021
Topic Review
Artificial Intelligence-Based Support in Cardiology
Artificial Intelligence (AI)-based algorithms, in particular, Deep Neural Networks (DNNs), have recently revolutionized image creation. Precise segmentation of lesions may contribute to an efficient diagnostics process and a more effective selection of targeted therapy. For example, an AI-based algorithm for the segmentation of pigmented skin lesions has been developed, which enables diagnosis in the earlier stages of the disease, without invasive medical procedures. With flexibility and scalability, AI can be also considered an efficient tool for cancer diagnosis, particularly in the early stages of the disease.
  • 560
  • 27 Mar 2024
Topic Review
Intrusion Detection System
The increased adoption of cloud computing resources produces major loopholes in cloud computing for cybersecurity attacks. An intrusion detection system (IDS) is one of the vital defenses against threats and attacks to cloud computing. IDSs encounter two challenges, namely, low accuracy and a high false alarm rate. Due to these challenges, additional efforts are required by network experts to respond to abnormal traffic alerts. To improve IDS efficiency in detecting abnormal network traffic, an IDS using a recurrent neural network based on gated recurrent units (GRUs) was developed and long short-term memory (LSTM) through a computing unit to form Cu-LSTMGRU was improved. 
  • 559
  • 30 Sep 2022
Topic Review
Learning Architectures of Deep Vision Multimodal Learning
Deep vision multimodal learning aims at combining deep visual representation learning with other modalities, such as text, sound, and data collected from other sensors. With the fast development of deep learning, vision multimodal learning has gained much interest from the community. The construction of a learning architecture and framework is the core technology of deep multimodal learning. The design of feature extraction, modality aggregation, and multimodal loss function will be discussed.
  • 559
  • 06 Jul 2022
  • Page
  • of
  • 58
ScholarVision Creations