You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
3D-Printed Satellite Brackets
Brackets are the load-bearing components in a satellite. The current age of satellites comprises specific brackets that set out as a link between the bodies of the satellite, reflector parts, and feeder facilities mounted at its upper end. Brackets are used to carry loads of the satellite body frame, supporting elements, batteries, and electronic goods. Additive Manufacturing (AM) is a process in which a 3D solid object is built by adding the material layer-over-layer. The success of making the product using AM technology requires greater experience in Design for Additive Manufacturing (DFAM) which makes use of the design of freedom of AM. Owing to the various advantages of AM and DFAM, it is easy to create high strength-to-weight ratio products. This is an important contribution to aerospace industries in meeting the unabated demand for lightweight and strong structural applications.
  • 2.7K
  • 09 Sep 2022
Topic Review
Hydraulic Powered Soft Actuators
Soft actuators have received extensive attention in robotics and smart device applications due to their distinctive dexterity and compliance. Among them, hydraulic soft actuators play an important role in the area because they have much higher specific power and power density than other types such as pneumatic soft actuators. Nevertheless, the deformation of flexible materials in soft actuators brings about inherent hysteresis and nonlinearity, which severely hinders them from producing the desired movement in the presence of advanced control strategies. 
  • 2.6K
  • 21 Dec 2022
Topic Review
Aerogel
Aerogels are one of the most interesting materials of the 21st century owing to their high porosity, low density, and large available surface area. Historically, aerogels have been used for highly efficient insulation and niche applications, such as interstellar particle capture. Recently, aerogels have made their way into the composite universe.
  • 2.6K
  • 14 Feb 2022
Topic Review
PEDOT:PSS Layer and Perovskite Solar Cells
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is the most successful conducting polymer, which has been widely used in displays, transistors, various sensors and photovoltaics (PVs). It has high optical  transparency in the visible light range and low-temperature processing condition, making it one of the most widely used polymer hole transport materials inverted perovskite solar cells (PSCs), because of its high optical transparency in the visible light range and low-temperature processing condition. However, the stability of PSCs based on pristine PEDOT:PSS is far from satisfactory, which is ascribed to the acidic and hygroscopic nature of PEDOT:PSS, and property differences between PEDOT:PSS and perovskite materials, such as conductivity, work function and surface morphology. 
  • 2.6K
  • 10 Feb 2022
Topic Review
Heat Dissipation Model of TIMs in High-Power Electronics
To improve the heat dissipation capability of high-power electronic systems, advanced thermal interface materials (TIMs) with high thermal conductivity and low interfacial thermal resistance are urgently needed in the structural design of advanced electronics. Metal-, carbon- and polymer-based TIMs can reach high thermal conductivity and are promising for heat dissipation in high-power electronics. 
  • 2.6K
  • 31 Oct 2022
Topic Review
Poly(Butylene Adipate-Co-Terephthalate)/Calcium Carbonate Films
Poly(butylene adipate-co-terephthalate) (PBAT) is a biodegradable polymer synthesized from petrochemical resources. PBAT has an exceptionally high elongation at break values which makes it one of the most promising substitutes for LDPE packaging films. However, the applicability of PBAT films is still limited by low strength and high production costs. Polyethylene glycol 600 (PEG-600) was used as a coating agent to modify the surface of calcium carbonate and improve compatibility with the polymer matrix. A series of PBAT/CaCO3 composite films having different CaCO3 particle size and content of coating agent was prepared using extrusion blow molding. 
  • 2.6K
  • 28 Feb 2022
Topic Review
Self-Healing Mechanisms of Polyurea
Self-healing polymers are categorized as smart materials that are capable of surface protection and prevention of structural failure. Polyurethane/polyurea, as one of the representative coatings, has also attracted attention for industrial applications.
  • 2.5K
  • 20 Jul 2022
Topic Review
Poly(vinylidene fluoride) Phase Structure and Identification
Poly(vinylidene fluoride) (PVDF) is one of the most interesting semicrystalline polymers and is often used in sensors, actuators, energy harvesters, etc., because of its high biocompatibility, film-forming ability, low cost, excellent chemical stability, and good electroactive characteristics, including piezo-, pyro-, and ferro-electric properties.
  • 2.5K
  • 30 Jun 2023
Topic Review
Applications of Laser-Induced Graphene Technology
Laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment and so on. A variety of preparation methods for graphene was summarized . The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were focused. Two strategies for large-scale production of LIG were briefly described. The wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage were discussed.
  • 2.5K
  • 20 Jul 2022
Topic Review
Geopolymer Materials
The advancement of eco-friendly technology in the construction sector has been improving rapidly. As a result, multiple building materials were developed, enhanced, and proposed as replacements for some traditional materials. One notable example presents geopolymer as a substitute for ordinary Portland concrete (OPC). The manufacturing process of (OPC) generates CO2 emissions and a high energy demand, both of which contribute to ozone depletion and global warming. The implementation of geopolymer concrete (GPC) technology in the construction sector provides a path to more sustainable growth and a cleaner environment. This is due to geopolymer concrete’s ability to reduce environmental pollutants and reduce the construction industry’s carbon footprint. This is achieved through its unique composition, which typically involves industrial byproducts like fly ash or slag. These materials, rich in silicon and aluminum, react with alkaline solutions to form a binding gel, bypassing the need for the high-energy clinker production required in OPC. The use of such byproducts not only reduces CO2 emissions but also contributes to waste minimization. Additionally, geopolymer offers extra advantages compared to OPC, including improved mechanical strength, enhanced durability, and good stability in acidic and alkaline settings. Such properties make GPC particularly suitable for a range of construction environments, from industrial applications to infrastructure projects exposed to harsh conditions. 
  • 2.5K
  • 15 Dec 2023
Topic Review
Agro-Food Waste Valorization for Sustainable Bio-Based Packaging
The increase in the generation of agro-food processing waste, coupled with uncontrolled disposal and inefficient recovery methods, has raised concerns among society, industries, and the research community. This issue is compounded by the accumulation of conventional synthetic packaging. Owing to their significant environmental and economic impacts, the development of sustainable, biocompatible, and biodegradable materials has become an urgent target. In this context, research efforts have been directed toward developing new packaging materials based on renewable sources, such as agro-food waste, contributing to the circular economy concept.
  • 2.5K
  • 17 Feb 2024
Topic Review
Mechanical Properties of Sugarcane-Bagasse-Ash-Integrated Concretes
Leading sugar-producing nations have been generating high volumes of sugarcane bagasse ash (SCBA) as a by-product. SCBA has the potential to be used as a partial replacement for ordinary Portland cement (OPC) in concrete, from thereby, mitigating several adverse environmental effects of cement while keeping the cost of concrete low. The majority of the microstructure of SCBA is composed of SiO2, Al2O3, and Fe2O3 compounds, which can provide pozzolanic properties to SCBA.
  • 2.4K
  • 30 Oct 2022
Topic Review
Supercritical CO2 Foaming Technologies
Poly(lactic acid) (PLA) foaming is divided into physical foaming and chemical foaming; in contrast with the latter, the use of a physical foaming agent for PLA foaming has the characteristic of being green and non-polluting in line with the current carbon-neutral development plan. At the same time, the foam obtained by physical foaming has the properties of lightweight, low density, and more stable. Common physical blowing agents are CO2 and N2. Due to the plasticizing effect of CO2, and its high solubility in PLA, which can promote the crystallization of PLA, the current research on the supercritical foaming of PLA, especially intermittent foaming, mainly uses CO2 as the preferred foaming agent. However, due to the fast diffusion rate of N2, smaller bubbles can be obtained in microcellular injection foaming using N2. Therefore, N2 is commonly used as a blowing agent in the microcellular injection foaming process. In the supercritical foaming process, foaming parameters, such as saturation temperature, saturation pressure, and saturation time have a great influence on the structure and properties of the bubble pores. The cell diameter, cell density, and foam volume expansion ratio are three fundamental parameters for characterizing the cell structure. The variation in the three parameters has a great influence on the cell structure and the performance of the foam. Cell diameter generally refers to the average diameter of at least 100 cell units in the foaming image obtained from electron microscopy. Cell density refers to the number of cells per cubic centimeter of the foamed sample. Volume expansion ratio refers to the density ratio of the unfoamed sample to the foamed sample.
  • 2.4K
  • 14 Nov 2022
Topic Review
Cobalt Catalysts for CO2 Reduction
Cobalt catalysts are very important due to their extensive applications in many industrial processes, such as Fisher–Tropsh synthesis and CO2 conversion. Electrocatalytic CO2 reduction reaction (CO2RR) is a promising strategy due to its easy operating system, simple constructions, operational at neutral pH, ambient temperature and atmospheric pressure, and low energy utilization to produce valuable chemicals and fuels such as formic acid, methane, ethanol, and carbon using renewable electricity. Therefore, CO2RR coupling with renewable energy sources can effectively achieve a carbon-neutral energy cycle and hydrocarbon products with high activity, stability, and selectivity.
  • 2.4K
  • 28 Sep 2021
Topic Review
Flexible sensors, fabrication and materials
The use of flexible sensors has tripled over the last decade due to the increased demand in various fields including health monitoring, food packaging, electronic skins and soft robotics. Flexible sensors have the ability to be bent and stretched during use and can still maintain their electrical and mechanical properties. Additionally, flexible sensors can be packaged conformally with the device in order to enable the miniaturization of products. These advantages promote the used of flexible sensors over rigid sensors, the latter which can also often lose their sensitivity when subject to bending.
  • 2.4K
  • 27 Sep 2021
Topic Review
All-Cellulose Composites
Wood- or plant-based cellulose fibres have shown their potential as a reinforcement in composites for a relatively long time alongside the commonly used glass-fibre and carbon-fibre reinforcements. Whereas regular biocomposites suffer from fibre-matrix adhesion-related challenges, all-cellulose composites (ACCs) can overcome this problem by both matrix and reinforcement having the same or a similar chemical structure, which results in good interfacial compatibility. ACCs can provide an environmentally friendly alternative to conventional petrochemical-based materials since they are a type of single-polymer composites (SPCs) from biomass-derived cellulose, and as such, they are easily recyclable, and they originate from renewable sources.
  • 2.3K
  • 17 Nov 2021
Topic Review
Method of Detecting Perfluorooctanoic Acid
Perfluorooctanoic acid (PFOA) is a new type of organic pollutant in wastewater that is persistent, toxic, and accumulates in living organisms. The development of rapid and sensitive analytical methods to detect PFOA in environmental media is of great importance. Fluorescence detection has the advantages of high efficiency and low cost, in which fluorescent probes have excellent fluorescence properties, excellent bio-solubility, and remarkable photostability. 
  • 2.3K
  • 31 Jan 2023
Topic Review
Circulatory Management of Polymer Waste
In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning.
  • 2.3K
  • 13 Sep 2021
Topic Review
Environmental Stability of Perovskite
This entry introduces the environmental stability of MAPbI3 perovskite thin film and MAPbBr3 perovskite single crystal.
  • 2.3K
  • 05 May 2021
Topic Review
Binding Materials for MOF Monolith Shaping Processes
The fabrication of porous Metal Organic Framework materials within resistant structures is a key challenge impeding their wide commercial use for processes such as adsorptive separation. In fact, the integration of nano-scale Metal–organic frameworks (MOFs)  crystallic structures into bulk components that can maintain the desired characteristics, for example, size, shape, and mechanical stability, is a prerequisite for their wide practical use in many applications. At the same time, it requires sophisticated shaping techniques that can structure nano/micro-crystalline fine powders of MOFs into diverse types of macroscopic bodies such as monoliths.
  • 2.3K
  • 01 Mar 2022
  • Page
  • of
  • 11
Academic Video Service