Topic Review
Ecliptic Coordinate System
The ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets (except Mercury) and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the vernal (March) equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.
  • 4.6K
  • 19 Oct 2022
Topic Review
Potential Flow Around a Circular Cylinder
In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.
  • 4.5K
  • 31 Oct 2022
Topic Review
Luminiferous Aether
Luminiferous aether or ether ("luminiferous", meaning "light-bearing") was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light. The aether hypothesis was the topic of considerable debate throughout its history, as it required the existence of an invisible and infinite material with no interaction with physical objects. As the nature of light was explored, especially in the 19th century, the physical qualities required of an aether became increasingly contradictory. By the late 1800s, the existence of the aether was being questioned, although there was no physical theory to replace it. The negative outcome of the Michelson–Morley experiment (1887) suggested that the aether did not exist, a finding that was confirmed in subsequent experiments through the 1920s. This led to considerable theoretical work to explain the propagation of light without an aether. A major breakthrough was the theory of relativity, which could explain why the experiment failed to see aether, but was more broadly interpreted to suggest that it was not needed. The Michelson-Morley experiment, along with the blackbody radiator and photoelectric effect, was a key experiment in the development of modern physics, which includes both relativity and quantum theory, the latter of which explains the particle-like nature of light.
  • 4.3K
  • 17 Oct 2022
Topic Review
History of Solar System Formation and Evolution Hypotheses
The history of scientific thought about the Formation and evolution of the Solar System begins with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704.
  • 4.1K
  • 22 Nov 2022
Topic Review
Physical Information
Physical information is a form of information. In physics, it refers to the information of a physical system. Physical information is an important concept used in a number of fields of study in physics. For example, in quantum mechanics, the form of physical information known as quantum information is used in many descriptions of quantum phenomena, such as quantum observation, quantum entanglement and the causal relationship between quantum objects that carry out either or both close and long-range interactions with one another. In a general sense, information is that which resolves uncertainty, which is due to the fact that it describes the details of that which is associated with the uncertainty. The description itself is, however, divorced from any type of language. When clarifying the subject of information, care should be taken to distinguish between the following specific cases: As the above usages are all conceptually distinct from each other, overloading the word "information" (by itself) to denote (or connote) several of these concepts simultaneously can lead to confusion. Accordingly, this article uses more detailed phrases, such as those shown in bold above, whenever the intended meaning is not made clear by the context.
  • 3.9K
  • 09 Oct 2022
Topic Review
Gastropoda
The gastropods (/ˈɡæstrəpɒdz/), commonly known as snails and slugs, belong to a large taxonomic class of invertebrates within the phylum Mollusca called Gastropoda (/ɡæsˈtrɒpədə/). This class comprises snails and slugs from saltwater, from freshwater, and from the land. There are many thousands of species of sea snails and slugs, as well as freshwater snails, freshwater limpets, and land snails and slugs. The class Gastropoda contains a vast total of named species, second only to the insects in overall number. The fossil history of this class goes back to the Late Cambrian. (As of 2017), 721 families of gastropods are known, of which 245 are extinct and appear only in the fossil record, while 476 are currently extant with or without a fossil record. Gastropoda (previously known as univalves and sometimes spelled "Gasteropoda") are a major part of the phylum Mollusca, and are the most highly diversified class in the phylum, with 65,000 to 80,000 living snail and slug species. The anatomy, behavior, feeding, and reproductive adaptations of gastropods vary significantly from one clade or group to another, so stating many generalities for all gastropods is difficult. The class Gastropoda has an extraordinary diversification of habitats. Representatives live in gardens, woodland, deserts, and on mountains; in small ditches, great rivers, and lakes; in estuaries, mudflats, the rocky intertidal, the sandy subtidal, the abyssal depths of the oceans, including the hydrothermal vents, and numerous other ecological niches, including parasitic ones. Although the name "snail" can be, and often is, applied to all the members of this class, commonly this word means only those species with an external shell big enough that the soft parts can withdraw completely into it. Those gastropods without a shell, and those with only a very reduced or internal shell, are usually known as slugs; those with a shell into which they can partly but not completely withdraw are termed semislugs. The marine shelled species of gastropods include species such as abalone, conches, periwinkles, whelks, and numerous other sea snails that produce seashells that are coiled in the adult stage—though in some, the coiling may not be very visible, for example in cowries. In a number of families of species, such as all the various limpets, the shell is coiled only in the larval stage, and is a simple conical structure after that.
  • 3.9K
  • 08 Nov 2022
Topic Review
Distance Measures (Cosmology)
Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity (such as the luminosity of a distant quasar, the redshift of a distant galaxy, or the angular size of the acoustic peaks in the cosmic microwave background (CMB) power spectrum) to another quantity that is not directly observable, but is more convenient for calculations (such as the comoving coordinates of the quasar, galaxy, etc.). The distance measures discussed here all reduce to the common notion of Euclidean distance at low redshift. In accord with our present understanding of cosmology, these measures are calculated within the context of general relativity, where the Friedmann–Lemaître–Robertson–Walker solution is used to describe the universe.
  • 3.9K
  • 19 Oct 2022
Topic Review
Degrees of Freedom (Physics and Chemistry)
In physics and chemistry, a degree of freedom is an independent physical parameter in the formal description of the state of a physical system. The set of all states of a system is known as the system's phase space, and the degrees of freedom of the system are the dimensions of the phase space. The location of a particle in three-dimensional space requires three position coordinates. Similarly, the direction and speed at which a particle moves can be described in terms of three velocity components, each in reference to the three dimensions of space. If the time evolution of the system is deterministic (where the state at one instant uniquely determines its past and future position and velocity as a function of time) such a system has six degrees of freedom. If the motion of the particle is constrained to a lower number of dimensions – for example, the particle must move along a wire or on a fixed surface – then the system has fewer than six degrees of freedom. On the other hand, a system with an extended object that can rotate or vibrate can have more than six degrees of freedom. In classical mechanics, the state of a point particle at any given time is often described with position and velocity coordinates in the Lagrangian formalism, or with position and momentum coordinates in the Hamiltonian formalism. In statistical mechanics, a degree of freedom is a single scalar number describing the microstate of a system. The specification of all microstates of a system is a point in the system's phase space. In the 3D ideal chain model in chemistry, two angles are necessary to describe the orientation of each monomer. It is often useful to specify quadratic degrees of freedom. These are degrees of freedom that contribute in a quadratic function to the energy of the system. Depending on what one is counting, there are several different ways that degrees of freedom can be defined, each with a different value.
  • 3.7K
  • 25 Nov 2022
Biography
Daniel Gabriel Fahrenheit
Daniel Gabriel Fahrenheit FRS (/ˈfærənhaɪt/; German: [ˈfaːʁənhaɪt]; 24 May 1686 – 16 September 1736)[1] was a physicist, inventor, and scientific instrument maker. Fahrenheit was born in Danzig (Gdańsk), then a predominantly German-speaking city in the Pomeranian Voivodeship of the Polish–Lithuanian Commonwealth. He later moved to the Dutch Republic at age 15, where he spent the re
  • 3.6K
  • 22 Nov 2022
Topic Review
Void
Cosmic voids are vast spaces between filaments (the largest-scale structures in the universe), which contain very few or no galaxies. The cosmological evolution of the void regions differs drastically from the evolution of the Universe as a whole: there is a long stage when the curvature term dominates, which prevents the formation of galaxy clusters and massive galaxies. Hence, although even the emptiest regions of voids contain more than ~15% of the average matter density of the Universe, the voids look almost empty for an observer. Voids typically have a diameter of 10 to 100 megaparsecs (30 to 300 million light years); particularly large voids, defined by the absence of rich superclusters, are sometimes called supervoids. They were first discovered in 1978 in a pioneering study by Stephen Gregory and Laird A. Thompson at the Kitt Peak National Observatory. Voids are believed to have been formed by baryon acoustic oscillations in the Big Bang, collapses of mass followed by implosions of the compressed baryonic matter. Starting from initially small anisotropies from quantum fluctuations in the early universe, the anisotropies grew larger in scale over time. Regions of higher density collapsed more rapidly under gravity, eventually resulting in the large-scale, foam-like structure or "cosmic web" of voids and galaxy filaments seen today. Voids located in high-density environments are smaller than voids situated in low-density spaces of the universe. Voids appear to correlate with the observed temperature of the cosmic microwave background (CMB) because of the Sachs–Wolfe effect. Colder regions correlate with voids and hotter regions correlate with filaments because of gravitational redshifting. As the Sachs–Wolfe effect is only significant if the universe is dominated by radiation or dark energy, the existence of voids is significant in providing physical evidence for dark energy.
  • 3.6K
  • 18 Oct 2022
Topic Review
Observer Effect
In physics, the observer effect is the disturbance of an observed system by the act of observation. This is often the result of instruments that, by necessity, alter the state of what they measure in some manner. A common example is checking the pressure in an automobile tire; this is difficult to do without letting out some of the air, thus changing the pressure. Similarly, seeing non-luminous objects requires light hitting the object, and causing it to reflect that light. While the effects of observation are often negligible, the object still experiences a change. This effect can be found in many domains of physics, but can usually be reduced to insignificance by using different instruments or observation techniques. A notable example of the observer effect occurs in quantum mechanics, as demonstrated by the double-slit experiment. Physicists have found that observation of quantum phenomena can change the measured results of this experiment. Despite the "observer effect" in the double-slit experiment being caused by the presence of an electronic detector, the experiment's results have been misinterpreted by some to suggest that a conscious mind can directly affect reality. The need for the "observer" to be conscious is not supported by scientific research, and has been pointed out as a misconception rooted in a poor understanding of the quantum wave function ψ and the quantum measurement process.
  • 3.5K
  • 29 Nov 2022
Topic Review
Black Belt (U.S. Region)
The Black Belt is a region of the Southern United States. The term originally described the prairies and dark fertile soil of central Alabama and northeast Mississippi. Because this area in the 19th century was historically developed for cotton plantations based on enslaved African American labor, the term became associated with these conditions. It was generally applied to a much larger agricultural region in the Southern United States, which was characterized by a history of cotton plantation agriculture in the 19th century and a high percentage of African Americans outside metropolitan areas. The enslaved peoples were freed after the American Civil War, and many continued to work in agriculture afterward. Their descendants make up much of the African-American population of the United States. During the first half of the 19th Century, as many as one million enslaved Africans were transported through sales in the domestic slave trade to the Deep South in a forced migration to work as laborers for the region's cotton plantations. After having lived enslaved for several generations in the area, many remained as rural workers, tenant farmers and sharecroppers after the Civil War and emancipation. Beginning in the early 20th century and up to 1970, a total of six million black people left the South in the Great Migration to find work and other opportunities in the industrial cities of the Northeast, Midwest, and West. Because of relative isolation and lack of economic development, the rural communities in the Black Belt have historically faced acute poverty, rural exodus, inadequate education programs, low educational attainment, poor health care, urban decay, substandard housing, and high levels of crime and unemployment. In December 2017, the Special Rapporteur of the Office of the United Nations High Commissioner for Human Rights declared that Alabama was the most impoverished area in the developed world. Given the history of decades of racial segregation into the late 20th century, African-American residents have been the most disproportionately affected, although these problems apply broadly to all ethnic groups in the rural Black Belt. The region and its boundaries have varying definitions, but it is generally considered a band through the center of the Deep South, although stretching from as far north as Delaware to as far west as East Texas.
  • 3.5K
  • 31 Oct 2022
Topic Review
Thermodynamic Dissipation Theory of Life
The Thermodynamic Dissipation Theory of the Origin and Evolution of Life argues that the escence of the origin of life was the microscopic dissipative structuring under UVC light of organic pigments (now known as the fundamental molecules of life - those common to all three domains) and their proliferation over the entire Earth surface, driven by the thermodynamic imperative of dissipating this part of the Archean solar spectrum into heat. With time, dissipative structuring led to ever more complex biosynthetic pathways for creating pigments and their support structures (and processes) which could dissipate not only the UVC region but also other UV regions and the visible wavelengths, until today reaching the "red edge" (at approximately 700 nm). The heat of dissipation of photons absorbed on organic pigments in water then catalyzes a host of coupled secondary dissipative processes such as; the water cycle, ocean and wind currents, hurricanes, etc. pushing the limit for dissipation of the incident light even further towards the infrared. The thermodynamic dissipation theory thus assgins an explicit thermodynamic function to life; the dissipative structuring, proliferation, and evolution of molecular pigments and their complexes from common precursor carbon based molecules under the impressed short wavelength solar photon potential to perform the explicit thermodynamic function of dissipating this light into long wavelength infrared light (heat). In a general sense, the origin of life is no different than the origin of other dissipative structuring processes like hurricanes and the water cycle, except that these latter processes deal with structuring involving hydrogen bonding while life deals with structuring involving covalent bonding. The external photon potential supplied continuously by the environment (our Sun), and its dissipation into heat by the assembly of dissipative structures, are, therefore, both integral components necessary for understanding life. Difficult problems related to the origin of life, such as enzyme-less replication of RNA and DNA, homochirality of the fundamental molecules, and the origin of amino acid -codon assignments (information encoding in RNA and DNA), also find simple explanations within this same dissipative thermodynamic framework once the existence of a relation between primordial RNA and DNA replication and UV-C photon dissipation is established.
  • 3.5K
  • 04 Feb 2021
Topic Review
Spatial Memory
In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording of information about one's environment and spatial orientation. For example, a person's spatial memory is required in order to navigate around a familiar city, just as a rat's spatial memory is needed to learn the location of food at the end of a maze. It is often argued that in both humans and animals, spatial memories are summarized as a cognitive map. Spatial memory has representations within working, short-term memory and long-term memory. Research indicates that there are specific areas of the brain associated with spatial memory. Many methods are used for measuring spatial memory in children, adults, and animals.
  • 3.5K
  • 04 Nov 2022
Topic Review
Teleparallel Equivalent of General Relativity
The teleparallel equivalent of general relativity (TEGR) is an alternative geometrical formulation of the relativistic theory of gravitation. A brief description of the  TEGR is presented. The building blocks of the theory and few main achievements are discussed.
  • 3.5K
  • 30 Oct 2020
Topic Review
Strain Rate Tensor
In continuum mechanics, the strain rate tensor is a physical quantity that describes the rate of change of the deformation of a material in the neighborhood of a certain point, at a certain moment of time. It can be defined as the derivative of the strain tensor with respect to time, or as the symmetric component of the gradient (derivative with respect to position) of the flow velocity. The strain rate tensor is a purely kinematic concept that describes the macroscopic motion of the material. Therefore, it does not depend on the nature of the material, or on the forces and stresses that may be acting on it; and it applies to any continuous medium, whether solid, liquid or gas. On the other hand, for any fluid except superfluids, any gradual change in its deformation (i.e. a non-zero strain rate tensor) gives rise to viscous forces in its interior, due to friction between adjacent fluid elements, that tend to oppose that change. At any point in the fluid, these stresses can be described by a viscous stress tensor that is, almost always, completely determined by the strain rate tensor and by certain intrinsic properties of the fluid at that point. Viscous stress also occur in solids, in addition to the elastic stress observed in static deformation; when it is too large to be ignored, the material is said to be viscoelastic.
  • 3.4K
  • 02 Dec 2022
Topic Review
Sociology of Space
The sociology of space is a sub-discipline of sociology that mostly borrows from theories developed within the discipline of geography, including the sub fields of human geography, economic geography, and feminist geography. The "sociology" of space examines the social and material constitution of spaces. It is concerned with understanding the social practices, institutional forces, and material complexity of how humans and spaces interact. The sociology of space is an inter-disciplinary area of study, drawing on various theoretical traditions including Marxism, postcolonialism, and Science and Technology Studies, and overlaps and encompasses theorists with various academic disciplines such as geography and architecture. Edward T. Hall developed the study of Proxemics which concentrates on the empirical analysis of space in psychology.
  • 3.4K
  • 03 Nov 2022
Topic Review
Mean Field Theory
In physics and probability theory, mean-field theory (aka MFT or rarely self-consistent field theory) studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of freedom. Such models consider many individual components that interact with each other. In MFT, the effect of all the other individuals on any given individual is approximated by a single averaged effect, thus reducing a many-body problem to a one-body problem. The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a molecular field. This reduces any multi-body problem into an effective one-body problem. The ease of solving MFT problems means that some insight into the behavior of the system can be obtained at a lower computational cost. MFT has since been applied to a wide range of fields outside of physics, including statistical inference, graphical models, neuroscience, artificial intelligence, epidemic models, queueing theory, computer network performance and game theory, as in the Quantal response equilibrium.
  • 3.4K
  • 03 Nov 2022
Topic Review
Applications of Liquid Crystals-Based Sensors
Liquid crystals are a class of chemical substances that exist in intermediate states between crystalline solids and liquids. They thus share the anisotropic properties of crystalline solids as well as fluid properties of isotropic liquids. 
  • 3.3K
  • 23 Mar 2022
Topic Review
White–Juday Warp-Field Interferometer
The White–Juday warp-field interferometer is an experiment designed to detect a microscopic instance of a warping of spacetime. If such a warp is detected, it is hoped that more research into creating an Alcubierre warp bubble will be inspired. A research team led by Harold "Sonny" White in collaboration with Dr. Richard Juday at the NASA Johnson Space Center and Dakota State University are conducting experiments, but results so far have been inconclusive.
  • 3.2K
  • 24 Nov 2022
  • Page
  • of
  • 18
ScholarVision Creations