You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Squamous Cell Carcinoma
More than 90% of all head and neck cancers (HNCs) are head and neck squamous cell carcinomas (HNSCCs) arising from the mucosal surfaces of the upper aerodigestive tract. HNSCCs are the the sixth most prevalent cancer worldwide, and are often associated with either carcinogens, such as alcohol and tobacco use, or oncogenic human papillomavirus (HPV) infection. HNSCCs have been found to be diverse with a high rate of genetic heterogeneity, resulting in hyper-activation of oncogenes (e.g., PIK3CA and HRAS) and loss-of-function mutations in tumor suppressor genes (e.g., TP53, CASP8, and NOTCH1). HNSCC cohorts from The Cancer Genome Atlas (TCGA) RNA-seq data and clinical data show patients with PIK3CA alterations, including amplification and gain, also have a higher chance of harboring TP53 mutations. In addition, these patients bearing both mutations have a significantly worse 10-year survival prognosis compared with their wildtype cohort counterparts.
  • 1.5K
  • 22 Sep 2020
Topic Review
Fibroblast Growth Factor Receptor
Fibroblast growth factors (FGFs) are a family of 22 cell-signaling proteins of extracellular origin, generally released upon tissue injury, which act as systemic or locally circulating molecules capable of activating tyrosine-kinase receptors.
  • 1.5K
  • 02 Feb 2021
Topic Review
Pitfalls and Limitations of Glioblastoma Diagnosis and Follow-Up
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Glioblastoma is mainly diagnosed by neuroimaging techniques followed by histopathological and molecular analysis of the resected or biopsied tissue.
  • 1.5K
  • 05 Aug 2022
Topic Review
Nanocarriers Used in Co-Delivery Systems
The concept of the co-delivery approach first occurred from merging two research fields: drug delivery and gene therapy. Co-delivery systems combine at least two therapeutic agents with different physiological and physicochemical properties; thus, achieving clinical combination chemotherapy. Taking into consideration the co-delivery strategy, combination therapy via nanotechnology approaches has progressively become a desirable technique and one of the leading frontiers in research to find an efficient drug delivery system (DDS).
  • 1.5K
  • 29 Aug 2022
Topic Review
Vitamin D in NF1
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available.
  • 1.5K
  • 29 Jan 2021
Topic Review
Obesity on Anti-Cancer Immunity
Cancer is one of the leading causes of morbidity and mortality worldwide. Traditional treatments include surgery, chemotherapy and radiation therapy, and more recently targeted therapies including immunotherapy are becoming routine care for some cancers. Immunotherapy aims to upregulate the patient’s own immune system, enabling it to destroy cancerous cells. Obesity is a metabolic disorder characterized by significant weight that is an important contributor to many different diseases, including cancers. Obesity impacts the immune system and causes, among other things, a state of chronic low-grade inflammation. This is hypothesized to impact the efficacy of the immunotherapies, such as immune checkpoint inhibitors, although not necessarily in a negative way. Data from several studies show that even though obesity causes a state of chronic low-grade inflammation with reductions in effector immune populations, it has a beneficial effect on patient survival following anti-PD-1/PD-L1 and anti-CTLA-4 treatment.
  • 1.5K
  • 10 Nov 2020
Topic Review
Sphingolipids in Mitophagy and Cancer
Sphingolipids are membrane-associated lipids that are involved in signal transduction pathways regulating cell death, growth, and migration. In cancer cells, sphingolipids regulate pathways relevant to cancer therapy, such as invasion, metastasis, apoptosis, and lethal mitophagy. Notable sphingolipids include ceramide, a sphingolipid that induces death and lethal mitophagy, and sphingosine-1 phosphate, a sphingolipid that induces survival and chemotherapeutic resistance. These sphingolipids participate in regulating the process of mitophagy, where cells encapsulate damaged mitochondria in double-membrane vesicles (called autophagosomes) for degradation. Lethal mitophagy is an anti-tumorigenic mechanism mediated by ceramide, where cells degrade many mitochondria until the cancer cell dies in an apoptosis-independent manner.
  • 1.4K
  • 06 Jun 2021
Topic Review
Chemotherapy Resistance
Multidrug resistance is a major factor contributing to the failure of cancer therapy and poor patient outcomes. While apoptosis (apoptotic cell death) is the desired outcome of anti-cancer therapy, chemotherapy and radiation often induce a number of mechanisms that can mediate resistance. p53 is an essential tumor suppressor and stress response protein, modulating multiple cellular responses to therapy. Gain of function (GOF) p53 mutations have been implicated in increased susceptibility to the development of drug resistance, by compromising wild type anti-tumor functions of p53 or modulating key p53 processes that confer chemotherapy resistance, such as autophagy. Autophagy, a conventionally cytoprotective mechanism, is often a “first responder” to chemotherapy (or radiation), by promoting the removal of damaged organelles and preventing excessive accumulation of damaged proteins; thus, autophagy, via its cytoprotectivefunction, may allow tumor cells to evade apoptotic cell death. However, substantial pre-clinical data and inconsistent clinical efficacy of autophagy inhibitors in combination with cancer chemotherapy indicates that autophagy can exhibit multiple functions and does not act solely as a cytoprotective response. Further inquiry relating to the influence of p53 status on autophagic function and its contributions to multidrug resistance will provide valuable insights towards patient response to therapy and the possibility of developing novel therapeutics for chemosensitization in the face of multidrug resistance. 
  • 1.4K
  • 16 Dec 2020
Topic Review
Chronic Myeloid Leukemia
The therapeutic approach to Chronic Myeloid Leukemia (CML) has changed since the advent of the tyrosine kinase inhibitor (TKI) imatinib, which was then followed by the second generation TKIs dasatinib, nilotinib, and, finally, by ponatinib, a third-generation drug. At present, these therapeutic options represent the first-line treatment for adults. Based on clinical experience, imatinb, dasatinib, and nilotinib have been approved for children even though the studies that were concerned with efficacy and safety toward pediatric patients are still awaiting more specific and high-quality data.
  • 1.4K
  • 05 Nov 2020
Topic Review
Chemotherapy-Induced Neuropathy and Diabetes
Diabetes mellitus and cancer are among the four most common chronic diseases, and are two of the leading causes of death worldwide [1]. Treatment of cancer patients with chemotherapy is influenced by multiple aspects, including neuropathy induced by chemotherapy drugs their self.
  • 1.4K
  • 06 Oct 2021
Topic Review
Oral Cancer
Chronic inflammation caused by infections has been suggested to be one of the most important cause of cancers. It has recently been shown that there is correlation between intestinal bacteria and cancer development including metastasis. As over 700 bacterial species exist in an oral cavity, it has been concerning that bacterial infection may cause oral cancer. However, the role of bacteria regarding tumorigenesis of oral cancer remains unclear. Several papers have shown that Fusobacterium species deriving the oral cavities, especially, play a crucial role for the development of colorectal and esophageal cancer. F. nucleatum is a well-known oral bacterium involved in formation of typical dental plaque on human teeth and causing periodontal diseases. The greatest characteristic of F. nucleatum is its ability to adhere to various bacteria and host cells. Interestingly, F. nucleatum is frequently detected in oral cancer tissues. Moreover, detection of F. nucleatum is correlated with the clinical stage of oral cancer. Although the detailed mechanism is still unclear, Fusobacterium species have been suggested to be associated with cell adhesion, tumorigenesis, epithelial-to-mesenchymal transition, inflammasomes, cell cycle, etc. in oral cancer.
  • 1.4K
  • 27 Oct 2020
Topic Review
Zinc Oxide Nanoparticles and Their Physiochemical Properties
Zinc oxide nanomaterials have been the cynosure of this decade because of their immense potential in different biomedical applications. It includes their usage in the prognosis and treatment of different infectious and cellular diseases, owing to their peculiar physiochemical properties such as variable shape, size, and surface charge etc. Increasing demand and usage of the ZnO nanomaterials raise concerns about their cellular and molecular toxicity and their biocompatibility with human cells.
  • 1.4K
  • 12 Jul 2023
Topic Review
ACHP Targets the STAT3
STAT3 is an oncogenic transcription factor that regulates the expression of genes which are involved in malignant transformation. Aberrant activation of STAT3 has been observed in a wide range of human malignancies and its role in negative prognosis is well-documented. In this report, we performed high-throughput virtual screening in search of STAT3 signaling inhibitors using a cheminformatics platform and identified 2-Amino-6-[2-(Cyclopropylmethoxy)-6-Hydroxyphenyl]-4-Piperidin-4-yl Nicotinonitrile (ACHP) as the inhibitor of the STAT3 signaling pathway. The predicted hit was evaluated in non-small cell lung cancer (NSCLC) cell lines for its STAT3 inhibitory activity. In vitro experiments suggested that ACHP decreased the cell viability and inhibited the phosphorylation of STAT3 on Tyr705 of NSCLC cells. In addition, ACHP imparted inhibitory activity on the constitutive activation of upstream protein tyrosine kinases, including JAK1, JAK2, and Src. ACHP decreased the nuclear translocation of STAT3 and downregulated its DNA binding ability. Apoptosis was evidenced by cleavage of caspase-3 and PARP with the subsequent decline in antiapoptotic proteins, including Bcl-2, Bcl-xl, and survivin. Overall, we report that ACHP can act as a potent STAT3 signaling inhibitor in NSCLC cell lines.
  • 1.4K
  • 28 Oct 2020
Topic Review
Cathepsin Proteases and Bcl-2 Proteins
Taken with the growing importance of cathepsin-mediated substrate proteolysis in tumor biology and progression, the focus and emphasis placed on therapeutic design and development is coming into fruition. Underpinning this approach is the invariable progression from the direction of fully characterizing cathepsin protease members and their substrate targets, towards targeting such an interaction with tangible therapeutics. The two groups of such substrates that have gained much attention over the years are the pro- and anti- apoptotic protein intermediates from the extrinsic and intrinsic signaling arms of the apoptosis pathway.
  • 1.4K
  • 08 May 2021
Topic Review
Trophoblast Cell Surface Antigen-2 in Cancer
Trophoblast cell surface antigen-2 (Trop-2) is a glycoprotein that was first described as a membrane marker of trophoblast cells and was associated with regenerative abilities. Trop-2 overexpression was also described in several tumour types. Nevertheless, the therapeutic potential of Trop-2 was widely recognized and clinical studies with drug–antibody conjugates have been initiated in various cancer types. 
  • 1.4K
  • 31 Mar 2023
Topic Review
Magnetic Resonance Thermometry in Hyperthermia
Hyperthermia is a treatment for cancer patients, which consists of heating the body to 43 °C. The temperature during treatment is usually measured by placing temperature probes intraluminal or invasively. The only clinically used option to measure temperature distributions non-invasively and in 3D is by MR thermometry (MRT). However, in order to be able to replace conventional temperature probes, MRT needs to become more reliable.
  • 1.4K
  • 07 Jan 2021
Topic Review
Prognostic Biomarkers in Colorectal Cancer
Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide and is heterogeneous both morphologically and molecularly. In an era of personalized medicine, the greatest challenge is to predict individual response to therapy and distinguish patients likely to be cured with surgical resection of tumors and systemic therapy from those resistant or non-responsive to treatment. Patients would avoid futile treatments, including clinical trial regimes and ultimately this would prevent under- and over-treatment and reduce unnecessary adverse side effects.
  • 1.4K
  • 25 May 2021
Topic Review
Neuropsychological Outcomes of Children Treated for Brain Tumors
Central nervous system (CNS) neoplasms are the most common solid tumors diagnosed in children. CNS tumors represent the leading cause of cancer death and cancer-related morbidity for children less than 20 years of age. Neurological, cognitive, and neuropsychological deficits are the most disabling long-term effects of brain tumors in children. Childhood is a time of extreme brain sensitivity and the time of life in which most brain development occurs. Thus, the long-term toxicities that children treated for CNS tumors experience can affect multiple developmental domains and day-to-day functioning, ultimately leading to a poor quality of survival (QoS). 
  • 1.4K
  • 08 Mar 2023
Topic Review
DYRK kinase family in cancer
       DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes, including those associated with all the hallmarks of cancer. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies are showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression.
  • 1.4K
  • 28 Aug 2020
Topic Review
Thyroid Hürthle Cell Carcinoma
Hürthle cells are characterized cytologically as large cells with abundant eosinophilic, granular cytoplasms, and large hyperchromatic nuclei with prominent nucleoli. The cytoplasm of a Hürthle cell is swollen due mainly to the presence of numerous mitochondria. The mitochondrial protein has affinity to bind with eosin. Therefore, Hürthle cells are also called oxyphilic cells. Hürthle cell lesions in the thyroid are composed of cells with this classic histology, but not all oncocytic cells in the thyroid are true Hürthle cells. Cells with less or incomplete eosinophilic, granular appearance can observed, at least focally, in any thyroid lesions, such as autoimmune thyroiditis, nodular goiter, aging, and irradiated thyroids. These oncocytic, non-Hürthle cells are called “oncocytic metaplasia”.
  • 1.4K
  • 23 Feb 2021
  • Page
  • of
  • 129
Academic Video Service