You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Applications of AMPs in Packaging
Antimicrobial Peptides can be defined as the molecules of the innate immune system present in all life forms, ranging from bacteria to human beings. The innate immune system is a defence system working non-specifically against injury or infection in the barrier surface. AMPs are composed of a sequence of amino acid ranging from 5 to 50 chains, usually L-amino acids.
  • 1.4K
  • 13 Aug 2021
Topic Review
Electrospun Nanofibers for Skin Tissue Engineering
Surface modification of electrospun products has been an attractive method for increasing multifunctionality and biocompatibility properties. 
  • 1.4K
  • 29 Mar 2022
Topic Review
Natural Antiviral Polymers
Natural polymers or biopolymers are classified into polysaccharides, polypeptides (proteins), and nucleic acid polymers (polynucleotides). Natural polymers as components of living systems are derived from plants, animals, and microorganisms.
  • 1.4K
  • 05 May 2022
Topic Review
Chitosan as a Biomaterial
Chitosan remarkable properties have aroused the interest of applying this material in several biomedical applications, such as tissue engineering, wound dressing, drug delivery, and cancer treatment, what has aroused the interest of this review to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications.
  • 1.4K
  • 25 Nov 2020
Topic Review
Microneedles in Drug Delivery
In recent years, an innovative transdermal delivery technology has attracted great interest for its ability to distribute therapeutics and cosmeceuticals for several applications, including vaccines, drugs, and biomolecules for skin-related problems. The advantages of microneedle patch technology have been extensively evaluated in the latest literature; hence, the academic publications in this area are rising exponentially. 
  • 1.4K
  • 29 Mar 2022
Topic Review
Enzymes in/on Metal-Organic Framework Materials
The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligibleprotein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.
  • 1.4K
  • 16 Sep 2021
Topic Review
Natural Polymers for Encapsulating Urea
Increases in food production to meet global food requirements lead to an increase in the demand for nitrogen (N) fertilizers, especially urea, for soil productivity, crop yield, and food security improvement. To achieve a high yield of food crops, the excessive use of urea has resulted in low urea-N use efficiency and environmental pollution. One promising alternative to increase urea-N use efficiency, improve soil N availability, and lessen the potential environmental effects of the excessive use of urea is to encapsulate urea granules with appropriate coating materials to synchronize the N release with crop assimilation. Chemical additives, such as sulfur-based coatings, mineral-based coatings, and several polymers with different action principles, have been explored and used for coating the urea granule. However, their high material cost, limited resources, and adverse effects on the soil ecosystem limit the widespread application of urea coated with these materials. 
  • 1.4K
  • 16 May 2023
Topic Review
Periodontitis Treatment
Fabrication of biomaterial that mimics a suitable biological microenvironment is still a major challenge in the field of periodontitis treatment. Hence, in this report, we presented for the first time the fabrication of a novel biomaterial 3D matrix using collagen combined with sodium alginate and titanium oxide (TiO2) to recreate the in-vivo microenvironment and to act as a platform for the culture of human periodontal ligament fibroblasts (HPLF) towards osteogenic differentiation.
  • 1.4K
  • 29 Oct 2020
Topic Review
Bimetallic Nanomaterials
Bimetallic nanomaterials (BMNs) are one kind of innovative nanomaterials, referring to nano-bimetallic alloy, intermetallic compounds, or the combination of two kinds of metallic nanoparticles. Compared with monometallic nanomaterials, BMNs perform similar or even better physical and chemical properties in the medical field. BMNs possess excellent physical and chemical properties, such as easy surface modification, superior photothermal properties, multiple catalytic properties, delicate sensitivity, and good stability. Synthesis methods of bimetallic nanomaterials. The preparation methods of BMNs commonly used for cancer therapy, such as co-reduction method, hydrothermal method, seed-mediated growth method, and electrodeposition method.
  • 1.4K
  • 21 Dec 2022
Topic Review
The Applications of Cationic Polymers
Nucleic acid therapy can achieve lasting and even curative effects through gene augmentation, gene suppression, and genome editing. However, it is difficult for naked nucleic acid molecules to enter cells. As a result, the key to nucleic acid therapy is the introduction of nucleic acid molecules into cells. Cationic polymers are non-viral nucleic acid delivery systems with positively charged groups on their molecules that concentrate nucleic acid molecules to form nanoparticles, which help nucleic acids cross barriers to express proteins in cells or inhibit target gene expression. Cationic polymers are easy to synthesize, modify, and structurally control, making them a promising class of nucleic acid delivery systems.
  • 1.4K
  • 05 Jun 2023
Topic Review
Safe Applications of Aerogels
An increasing number of aerogels as nanostructured highly porous materials are entering the market in every day products, with an attractive portfolio of properties for emerging applications ranging from health care and leisure to electronics, cosmetics, energy, agriculture, food and environmental.
  • 1.3K
  • 03 Nov 2023
Topic Review
Skeletal Muscle Gene Delivery
Since Jon A. Wolff found skeletal muscle cells being able to express foreign genes and Russell J. Mumper increased the gene transfection efficiency into the myocytes by adding polymers, skeletal muscles have become a potential gene delivery and expression target. Different methods have been developing to deliver transgene into skeletal muscles. Among them, viral vectors may achieve potent gene delivery efficiency. Therefore, non-viral biomaterial-mediated methods with reliable biocompatibility are promising tools for intramuscular gene delivery in situ. A series of advanced non-viral gene delivery materials and related methods have been reported, such as polymers, liposomes, cell penetrating peptides, as well as physical delivery methods.
  • 1.3K
  • 25 Nov 2022
Topic Review
Calcium Silicate-Based Materials - Antimicrobial
Endodontic materials have significantly improved dental treatment techniques in several aspects as they can be used for vital pulp treatments, as temporary root canal medication, in definitive fillings, in apical surgeries, and for regenerative procedures. Calcium silicate-based cement is a class of dental material that is used in Endodontics in direct contact with the dental structures, connective tissue, and bone. Because the material interacts with biological tissues and stimulates biomineralization processes, its properties are of major importance. The main challenge in endodontic treatments is the elimination of biofilms that are present in the root canal system anatomical complexities, as it remains even after chemical-mechanical preparation and disinfection procedures. Thus, an additional challenge for these biomaterials is to exert antimicrobial activity while maintaining their biological properties in parallel.
  • 1.3K
  • 29 Jul 2021
Topic Review
Biopolymers Produced by Lactic Acid Bacteria
A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry.
  • 1.3K
  • 12 Apr 2023
Topic Review
RNAi Delivery
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration.
  • 1.3K
  • 17 Jun 2022
Topic Review
Hydrogel Adhesives for Gastrointestinal Perforation
The gastrointestinal tract (GI) contains all the major organs of the digestive system, including the esophagus, stomach, small intestine (duodenum, jejunum, and ileum), and large intestine (cecum, colon, and rectum). It is essential for the transportation, digestion, and absorption of food. Hydrogel adhesives are emerging as an attractive alternative to sutures and staples for treating internal tissue wounds including wounds present in the GI tract. Hydrogels are three-dimensional, hydrophilic, crosslinked polymer networks that absorb and retain large amounts of water to maintain a gel-like swollen state.
  • 1.3K
  • 13 Apr 2023
Topic Review
Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
  • 1.3K
  • 24 Nov 2020
Topic Review
Types of Scaffolds in Cartilage Regeneration
There are two main types of scaffolds: natural polymers and synthetic polymers. On the one hand, natural polymers are proteins (e.g., collagen, SF) and polysaccharides (e.g., Alg, CS, and HA derivatives). Natural polymers already have a long history of application in wound treatment. They are the closest substances to human tissue and show biocompatibility and biodegradability without toxic byproducts, and their technologies and properties have been widely investigated. Furthermore, in the form of hydrogels, they can retain a great amount of water. However, natural polymers are normally poor in mechanical strength. On the other hand, synthetic polymers have different properties. They allow the better control of formation, surface morphology, mechanical strength and physicochemical properties than natural polymers. Among them, poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL) and poly(urethanes) (PU) are the most popular candidates in osteochondral regeneration. The limitations of synthetic polymers are poor hydrophilicity, proinflammatory degradation byproducts, and unmatched degradation rates. It is noticeable that these two types of polymers are not independent.
  • 1.3K
  • 08 Sep 2022
Topic Review
Magnification of Iris in Ocular Prosthesis
The ocular prostheses, used for the prosthetic rehabilitation of ocular defects, are generally made from acrylic resin. As the thickness of clear acrylic over the iris is increased on the ocular prosthesis, the size of the iris is also increased, due to magnification through the clear resin.
  • 1.3K
  • 22 Mar 2022
Topic Review
Renewable Carbon
Renewable carbon is one of the most important materials which have been used in a wide range of applications, such as chemical catalysis, medicinal purification, environmental cleaning and metal extraction. Meanwhile, with the development of technology, the use field of renewable carbon keeps expanding to new areas, such as electrode and super-capacitors for energetic cell, as well as many other innovative industries. Similar to carbon nanotube (CNT) or graphene, it has variable characteristics of surface groups, along with high interface reactivity. These surface groups provide abundant reaction sites for chemical modification via electrostatic/van der Waals force, chemical bonding or noncovalent π-π interactions, thus imparting carbon particles with excellent natural affinity toward a large number of substrates. Moreover, the highly developed porous structure renders renewable carbon with a large range of surface area (500-3000 m2/g). It consists of thin graphite layers with exceptional mechanical strength, which highlights its great potential to be used as reinforcement agent in advanced packaging composites.
  • 1.3K
  • 01 Nov 2020
  • Page
  • of
  • 32
Academic Video Service