You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
The Recent Progress on Silver Nanoparticles
Nanomaterials are highly effective,  environmentally friendly, and applicable for various applications. Recently, silver nanoparticles (Ag NPs) are increasingly being synthesized due to their physical, chemical, and biomedical properties. Silver nanoparticles can be synthesized using physical, chemical, and biological methods. Ag NPs are widely applied in electronic and sensing applications.
  • 1.7K
  • 20 Nov 2021
Topic Review
Application of MXenes Material for Sensors
MXenes are a class of 2D early transition nitride, metal carbides, and carbonitrides that are created by the group that selectively etches IIIA/IVA elements from three-dimensional (3D) MAX -phases. MXenes, a rising star of 2D materials, are unique in that they combine the hydrophilicity of their terminating surfaces with the metallic conductivity of transition metal carbonitrides or carbides. Because of its unusual accordion-like structure and the functional groups that are added to the surface during their synthesis, MXenes have enticing electrical, optical, and magnetic properties that can be used for sensing, energy storage, and electromagnetic shielding.
  • 1.7K
  • 15 Feb 2023
Topic Review
Nanotechnology and Biodegradable Biopolymer-Based Packaging Materials
There is great interest in developing biodegradable biopolymer-based packaging materials whose functional performance is enhanced by incorporating active compounds into them, such as light blockers, plasticizers, crosslinkers, diffusion blockers, antimicrobials, antioxidants, and sensors. However, many of these compounds are volatile, chemically unstable, water-insoluble, matrix incompatible, or have adverse effects on film properties, which makes them difficult to directly incorporate into the packaging materials. These challenges can often be overcome by encapsulating the active compounds within food-grade nanoparticles, which are then introduced into the packaging materials. The presence of these nanoencapsulated active compounds in biopolymer-based coatings or films can greatly improve their functional performance. For example, anthocyanins can be used as light-blockers to retard oxidation reactions, or they can be used as pH/gas/temperature sensors to produce smart indicators to monitor the freshness of packaged foods. Encapsulated botanical extracts (like essential oils) can be used to increase the shelf life of foods due to their antimicrobial and antioxidant activities. The resistance of packaging materials to external factors can be improved by incorporating plasticizers (glycerol, sorbitol), crosslinkers (glutaraldehyde, tannic acid), and fillers (nanoparticles or nanofibers). Nanoenabled delivery systems can also be designed to control the release of active ingredients (such as antimicrobials or antioxidants) into the packaged food over time, which may extend their efficacy.
  • 1.6K
  • 22 Dec 2021
Topic Review
Quantum Dots for Optoelectronic Applications
Quantum dots (QDs) are tiny semiconductor particles that typically range in size from 2 to 10 nanometers. Because of their small size, they have unique optical and electrical properties, resulting in quantum confinement of electrons and holes within the material. This confinement results in discrete energy levels, and the energy of the confined particles is determined by the size of the QDs QDs could be used in a variety of applications, including displays, solar cells, medical imaging, and quantum computing.. They are typically only a few nanometers in size. QDs can be employed as a light-sensitive substance, also referred to as a photoconductive substance, in a photodetector.
  • 1.6K
  • 06 Apr 2023
Topic Review
Silicone Resin-Based Intumescent Paints
Silicone resins are widely applied as coating materials due to their unique properties, especially those related to very good heat resistance. The most important effect on the long-term heat resistance of the coating is connected with the type of resin. Moreover, this structure is stabilized by a chemical reaction between the hydroxyl groups from the organoclay and the silicone resin. The novel trends in application of silicone resins in intumescent paints used mostly for protection of steel structures against fire will be presented based on literature review. Some examples of innovative applications for fire protection of other materials will be also presented. The effect of silicone resin structure and the type of filler used in these paints on the properties of the char formed during the thermal decomposition of the intumescent paint will be discussed in detail. The most frequently used additives are expanded graphite and organoclay. It has been demonstrated that silicate platelets are intercalated in the silicone matrix, significantly increasing its mechanical strength and resulting in high protection against fire.
  • 1.6K
  • 05 Nov 2020
Topic Review
Transdermal Drug Delivery System
Transdermal drug delivery system (TDDS) is an attractive method for drug delivery with convenient application, less first-pass effect, and fewer systemic side effects. Among all generations of TDDS, transdermal nanocarriers show the greatest clinical potential because of their non-invasive properties and high drug delivery efficiency. However, it is still difficult to design optimal transdermal nanocarriers to overcome the skin barrier, control drug release, and achieve targeting. Hence, surface modification becomes a promising strategy to optimize and functionalize the transdermal nanocarriers with enhanced penetration efficiency, controlled drug release profile, and targeting drug delivery.
  • 1.6K
  • 14 Dec 2022
Topic Review
Carbon-Based Nanofluids
Carbon-based nanofluids are made of ND, graphene, and CNT, etc., and can be employed in some of the commonly known thermal applications in the energy industry. In addition, it possess the most favorable thermal properties and, when well handled, physical properties compared to any other type of nanofluids or conventional fluids. This is because these carbon-based materials, when dispersed in a base fluid attain unique features such as high thermal conductivity and specific heat capacity, high heat transfer rate, and lower pressure drop in the working system compared to other types of dispersed nanomaterials. Furthermore, the aforementioned suspensions cause the least corrosion and erosion effects on the hosting device, all of which are crucial parameters for the operation cycle. Moreover, the influence of the stability of these suspensions on their thermophysical properties was also highlighted along with the development in these properties prediction correlations.
  • 1.6K
  • 19 Jul 2021
Topic Review
Carbon Nanostructures
Carbon is a unique element of the periodic table possessing the extraordinary capability to organize its four valence electrons in different hybridization states, namely sp, sp2, sp3 leading to both strong covalent and weak π-π bonds
  • 1.6K
  • 23 Jun 2021
Topic Review
Nanoparticle–Graphene based Nanocomposites
Bacterial infections are a leading cause of death in both Europe and USA. The use of antibacterial nanomaterials is a very promising approach to combat the microorganisms due to their high specific surface area and intrinsic or chemically incorporated antibacterial action. Graphene, a two dimensional carbon nanomaterial with excellent mechanical, thermal, and electrical properties, and its derivatives, like graphene oxide (GO) and reduced graphene oxide (rGO), are very good candidates for controlling microbial infections. Nonetheless, the mechanisms of antimicrobial action, their cytotoxicity, and other issues continue imprecise. This review offers select examples on the leading advances in the development of antimicrobial nanocomposites incorporating inorganic nanoparticles and graphene or its derivatives, with the goal of providing a improved understanding of the antibacterial properties of graphene-based nanomaterials.
  • 1.6K
  • 02 Nov 2020
Topic Review
TiO2 Microscale Structures
TiO2 microscale structures can be prepared from both TiO2 precursors and TiO2 nanoparticles (NPs). TiO2 microscale structures have many advantages compared to TiO2 NPs powders, such as tunable structure, higher photocatalytic activity, and ease of recovery. For TiO2 microscale structures, solid spheres and hollow spheres share some similar synthesis methods. However, microscale TiO2 microscale structures are not easily mass-produced due to the complexity of the synthesis process.
  • 1.6K
  • 26 Oct 2020
Topic Review
Covalent Organic Frameworks
Covalent organic frameworks (COFs) are emerging crystalline polymeric materials with highly ordered intrinsic and uniform pores.
  • 1.6K
  • 19 May 2021
Topic Review
Strategies for the Preparation of Phosphorus Janus Dendrimers
Dendrimers, being highly branched monodispersed macromolecules, predominantly exhibit identical terminal functionalities within their structural framework. Nonetheless, there are instances where the presence of two distinct surface functionalities becomes advantageous for the fulfilment of specific properties. To achieve this objective, one approach involves implementing Janus dendrimers, consisting of two dendrimeric wedges terminated by dissimilar functionalities.
  • 1.6K
  • 21 Aug 2023
Topic Review
Nanotechnology in Cosmetics
Nanomaterials are materials with a size ranging from 1 to 100 nm in at least one dimension. At the nanoscale, material properties become different. These unique properties can be exploited for a variety of applications, including the use of nanoparticles in skincare and cosmetics products. Cosmeceuticals is one of the fastest growing industries in terms of personal care, accompanied by an increase in nanocosmeceuticals research and applications.
  • 1.6K
  • 27 Oct 2022
Topic Review
TMCs, TMNs as LOB catalyst
A large volume of research on lithium–oxygen (Li–O2) batteries (LOBs) has been conducted in the recent decades, inspired by their high energy density and power density. However, these future generation energy-storage devices are still subject to technical limitations, including a squat round-trip efficiency and a deprived rate-capability, due to the slow-moving electrochemical kinetics of both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) over the surface of the cathode catalyst. Because the electrochemistry of LOBs is rather complex, only a limited range of cathode catalysts has been employed in the past. To understand the catalytic mechanisms involved and improve overall cell performance, the development of new cathode electrocatalysts with enhanced round-trip efficiency is extremely important. In this context, transition metal carbides and nitrides (TMCs and TMNs, respectively) have been explored as potential catalysts to overcome the slow kinetics of electrochemical reactions.  
  • 1.6K
  • 23 Nov 2020
Topic Review
Synthesis and Simulation of Nanomaterials
Nanocomposite materials “are composed of several multiple nanomaterials entrapped within a bulk material, which may comprise a combination of a soft and a hard nanomaterial, two soft nanomaterials, or two hard nanomaterials”. 
  • 1.6K
  • 27 Apr 2022
Topic Review
PbS Quantum Dot Solar Cells
PbS (lead sulfide) colloidal quantum dots consist of crystallites with diameters in the nanometer range with organic molecules on their surfaces, partly with additional metal complexes as ligands. These surface molecules are responsible for solubility and prevent aggregation, but the interface between semiconductor quantum dots and ligands also influences the electronic structure. PbS quantum dots are especially interesting for optoelectronic applications and spectroscopic techniques, including photoluminescence, photodiodes and solar cells.
  • 1.6K
  • 12 Sep 2020
Topic Review
Graphene Quantum Dots (GQDs)
Graphene quantum dots (GQDs) are small fragments of graphene with lateral dimensions less than 100 nm, with properties deriving from both graphene and carbon points.
  • 1.6K
  • 11 May 2021
Topic Review
Adsorptive Membrane for Boron Removal
The complexity of removing boron compounds from aqueous systems has received serious attention among researchers and inventors in the water treating industry. This is due to the higher level of boron in the aquatic ecosystem, which is caused by the geochemical background and anthropogenic factors. The gradual increase in the distribution of boron for years can become extremely toxic to humans, terrestrial organisms and aquatic organisms. Numerous methods of removing boron that have been executed so far can be classified under batch adsorption, membrane-based processes and hybrid techniques. Conventional water treatments such as coagulation, sedimentation and filtration do not significantly remove boron, and special methods would have to be installed in order to remove boron from water resources. The blockage of membrane pores by pollutants in the available membrane technologies not only decreases their performance but can make the membranes prone to fouling. Therefore, the surface-modifying flexibility in adsorptive membranes can serve as an advantage to remove boron from water resources efficiently. These membranes are attractive because of the dual advantage of adsorption/filtration mechanisms. 
  • 1.6K
  • 05 Sep 2022
Topic Review
Cellulose Nanocrystals
Cellulose has both highly ordered crystalline and amorphous regions in varying proportions, depending on its source. Removing the amorphous region influences the structure and crystallinity of the cellulose, resulting in the formation of CNCs. CNCs are needle-like particles made up of cellulose chain segments that have been organized in an almost defect-free crystalline structure with at least one dimension less-than-or-equal-to 100 nm. CNCs are also known as cellulose nanowhiskers, cellulose whiskers, and nanocrystalline cellulose, but CNCs is the most used term. CNCs have a high thermal stability, surface area, and crystallinity compared to bulk cellulose, which has more amorphous fractions. Different types of LCB waste have been used to extract CNCs such as cotton, pineapple leaf, sugarcane bagasse, walnut shell, soy hulls, bamboo fibre, and many more.
  • 1.6K
  • 29 Apr 2022
Topic Review
Metal (Mo, W, Ti) Carbides for Dry Reforming
Dry reforming of hydrocarbons (DRH) is a pro-environmental method for syngas production. It owes its pro-environmental character to the use of carbon dioxide, which is one of the main greenhouse gases. Transition metal carbides (TMCs) can potentially replace traditional nickel catalysts due to their stability and activity in DR processes. 
  • 1.6K
  • 18 Jan 2022
  • Page
  • of
  • 42
Academic Video Service