You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Essential Oils Stabilization into Biodegradable Food Packaging Materials
Human health, food spoilage, and plastic waste, which are three great topical concerns, intersect in the field of food packaging. This has created a trend to replace synthetic food preservatives with natural ones, to produce bio-functional food packaging, and to shift towards biodegradable polymeric materials. Essential oils are gaining more and more attention in food packaging applications due to their various benefits and fewer side-effects. Fixation into polymeric matrices by emulsification and electrospinning, represents suitable strategies  for protection and stabilization of essential oils, promoting the benefits and reducing the drawbacks. This review focuses on creating correlations between the use of essential oils as natural additives, stabilization methods, and biodegradable polymeric matrices or substrates in developing bioactive food packaging materials.
  • 1.0K
  • 11 Nov 2021
Topic Review
Characterization of Polymeric Coatings
The development of anti-corrosion polymeric coatings has grown exponentially in the fields of material science, chemistry, engineering, and nanotechnology and has prompted the evolution of efficient characterization techniques. Polymeric coatings represent a well-established protection system that provides a barrier between a metallic substrate and the environment. However, the increase in complexity and functionality of these coatings requires high-precision techniques capable of predicting failures and providing smart protection.
  • 1.0K
  • 22 Jun 2022
Topic Review
Sensing ability of ferroelectric oxide nanowires grown in nanopores
Nanowires of ferroelectric potassium niobate were grown by filling nanoporous templates of both sides opened anodic aluminum oxide (AAO) through radiofrequency vacuum sputtering for multisensor fabrication. The precise geometrical ordering of the AAO matrix led to a well-defined single-axis oriented wire-shaped material inside the pores. The sensing abilities of the samples were studied and analyzed in terms of piezoelectric and pyroelectric response and the results were compared for different lengths of the nanopores (nanotubes)—1.3 µm, 6.3 µm, and 10 µm. Based on scanning electron microscopy, elemental and microstructural analyses, as well as electrical measurements at bending and heating, the overall sensing performance of the devices was estimated. It was found that the produced membrane-type elements, consisting of potassium niobate grown in AAO template exhibited excellent piezoelectric response due to the increased specific area as compared to non-structured films, and could be further enhanced with the length of the nanowires. The piezoelectric voltage increased linearly with 16 mV per micrometer of nanowire’s length. At the same time, the pyroelectric voltage was found to be less sensitive to the length of the nanowires, changing its value at 400 nV/µm. This paper provides a simple and low-cost approach for nanostructuring ferroelectric oxides with multi-sensing application and serves as a base for further optimization of template-based nanostructured devices.
  • 1.0K
  • 29 Oct 2020
Topic Review
Application of Stretchable Superhydrophobic Surfaces
Superhydrophobic surfaces find extensive applications in various fields, including self-cleaning, liquid manipulation, anti-icing, and water harvesting. To achieve superhydrophobicity, the surfaces are designed with hierarchical nano- and/or microscale protrusions. These structures result in a static contact angle above 150° and a sliding/rolling-off angle below 10° when water droplets deposit on the surface. The combination of hierarchical structures and low-surface energy materials contributes to this unique liquid-repellent property. In addition to liquid repellency, the durability of these surfaces is crucial for practical applications, which has prompted the exploration of stretchable superhydrophobic surfaces as a viable solution. The flexibility of these surfaces means that they are effectively safeguarded against mechanical damage and can withstand daily wear and tear. 
  • 993
  • 10 Jan 2024
Topic Review
Organic Coating-Embedded Health Monitoring Technologies
In line with the recent industrial trends of hyperconnectivity, 5G technology deployment, the Internet of Things (IoT) and Industry 4.0, the ultimate goal of corrosion prevention is the invention of smart coatings that are able to assess their own condition, predict the onset of corrosion and alert users just before it happens. It is of particular interest to tackle corrosion that occurs in non-accessible areas where human inspectors or handheld devices are useless. To accomplish this, a variety of technologies that are embedded or could potentially be embedded into the coatings are being developed to monitor coating condition, which are based, for instance, on the evolution of electrochemical or mechanical properties over time. For these technologies to be fully embedded into the coatings and work remotely, solutions are needed for connectivity and power supply. A paradigm shift from routine prescheduled maintenance to condition-based preventive maintenance could then become a reality.
  • 986
  • 11 May 2022
Topic Review
Grain Boundary Diffusion Sources
Grain boundary diffusion process provides a promising way to enhance coercivity for Nd-Fe-B permanent magnets with a tiny consumption of critical rare earth resources. By this method, during a diffusion heat treatment, diffusion sources infiltrate from magnet surface into interior of magnet through melting grain boundary phases. Nowadays, 3 generations of grain boundary diffusion sources haven been developed, i.e., heavy rare earth based, light rare earth based, and non-rare earth based sources.
  • 979
  • 24 Sep 2021
Topic Review
Membrane-Based Biogas and Biohydrogen Upgrading
Biogas and biohydrogen, due to their renewable nature and zero carbon footprint, are considered two of the gaseous biofuels that will replace conventional fossil fuels. Biogas from anaerobic digestion must be purified and converted into high-quality biomethane prior to use as a vehicle fuel or injection into natural gas networks.
  • 970
  • 11 Oct 2022
Topic Review
Application of Polysaccharides in Biodegradable Films
Biodegradable films emerge as alternative biomaterials to conventional packaging from fossil sources, which, in addition to offering protection and increasing the shelf life of food products, are ecologically sustainable. The materials mostly used in their formulation are based on natural polysaccharides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants). The formulation of biodegradable films from polysaccharides and various plasticizers represents an alternative for primary packaging that can be assigned to specific food products, which opens the possibility of having multiple options of biodegradable films for the same product.
  • 963
  • 08 Jul 2022
Topic Review
Nanocarriers for Sustainable Active Packaging
Lockdown has been installed due to the fast spread of COVID-19, and several challenges have occurred. Active packaging was considered a sustainable option for mitigating risks to food systems during COVID-19. Biopolymeric-based active packaging incorporating the release of active compounds with antimicrobial and antioxidant activity represents an innovative solution for increasing shelf life and maintaining food quality during transportation from producers to consumers. However, food packaging requires certain physical, chemical, and mechanical performances, which biopolymers such as proteins, polysaccharides, and lipids have not satisfied. In addition, active compounds have low stability and can easily burst when added directly into biopolymeric materials. Due to these drawbacks, encapsulation into lipid-based, polymeric-based, and nanoclay-based nanocarriers has currently captured increased interest. Nanocarriers can protect and control the release of active compounds and can enhance the performance of biopolymeric matrices. 
  • 957
  • 26 Jan 2022
Topic Review
Graphene Oxide-Based Multi-Functionalization Coatings
Graphene oxide (GO), derived from the two-dimensional nanosheet graphene, has received unprecedented attention in the field of metal corrosion protection owing to its excellent barrier performance and various active functional groups. 
  • 955
  • 30 Jun 2023
Topic Review
Phase Behavior of Blend Materials
Blend materials refer to two or more polymers are formed by mixing together by physical or chemical methods, such as mixing block copolymers with block copolymers, block copolymers with homopolymers.
  • 943
  • 13 Sep 2021
Topic Review
Buried Interface of Perovskite Solar Cells
Perovskite solar cells (PSCs) have been developed rapidly in recent years because of their excellent photoelectric performance. However, interfacial non-radiative recombination hinders the improvement of device performance. The buried interface modification strategy can minimize the non-radiation recombination in the interface and can obtain the high efficiency and stability of PSCs.
  • 935
  • 31 Jul 2023
Topic Review
Annealing Methods for Perovskite Solar Cells
Perovskite solar cells (PSCs) have garnered significant attention in the photovoltaic field owing to their exceptional photoelectric properties, including high light absorption, extensive carrier diffusion distance, and an adjustable band gap. Temperature is a crucial factor influencing both the preparation and performance of perovskite solar cells. The annealing temperature exerts a pronounced impact on the device structure, while the operational temperature influences carrier transport, perovskite band gap, and interface properties. 
  • 924
  • 28 Feb 2024
Topic Review
Laser Cladding Coatings on Magnesium Alloys
The surface properties of magnesium alloys can be improved by Laser Cladding in order to increase wear and corrosion resistance manteining the lower density of these alloys. This can make magnesium alloys a promising structural material to be used as a substitute for metals traditionally used in the automotive and aircraft sector. 
  • 921
  • 28 Mar 2022
Topic Review
Gas/Solid Interface Charging Phenomena
Surface charge accumulation in the spacer modifies local electric fields, which restricts the industrialization of high voltage direct current (HVDC) gas-insulated transmission lines (GILs). In this paper, the state of art in gas/solid interface charging physics and models, covering areas of charge measurement techniques, charge transport mechanisms, charge related DC surface flashover models, and charge control methods, is reviewed and discussed. Key issues that should be considered in future studies are summarized and proposed. The purpose of this work is to provide a brief update on the most important and latest progress in this research area, and to educate readers as to the current state of the gas-solid interface charging phenomenon, which has seen great progress in the past few years.
  • 918
  • 10 Dec 2020
Topic Review
High-Velocity Oxy-Fuel Technology
Due to the toxicity associated with chromium electrodeposition, alternatives to that process are highly sought after. One of those potential alternatives is High Velocity Oxy-Fuel (HVOF). Costs and environmental impacts per piece coated are then evaluated. On an economic side, the lower labor requirements of HVOF allow one to noticeably reduce the costs (20.9% reduction) per functional unit (F.U.). Furthermore, on an environmental side, HVOF has a lower impact for the toxicity compared to electrodeposition, even if the results are a bit more mixed in other impact categories.
  • 918
  • 26 May 2023
Topic Review
Functional Materials for Carbon-Based Perovskite Solar Cells Fabrication
Perovskite solar cells (PSCs) have rapidly developed into one of the most attractive photovoltaic technologies, exceeding power conversion efficiencies of 25% and as the most promising technology to complement silicon-based solar cells. Among different types of PSCs, carbon-based, hole-conductor-free PSCs (C-PSCs), in particular, are seen as a viable candidate for commercialization due to the high stability, ease of fabrication, and low cost. 
  • 896
  • 16 Jun 2023
Topic Review
Principle of Cold Spray Technology
Copper (Cu)-based composite coatings have been widely applied in all kinds of important industry fields due to their outstanding comprehensive properties. The preparation temperature of a composite coating is the key factor affecting the properties, so the cold spray (CS) technology is characterized by low-temperature solid-state deposition, which ensures its emergence as the most promising technology for preparing the Cu-based composite coatings. The CS process is achieved using high-pressure gas, during which the solid particles are regulated to impact the substrate at a supersonic speed and then deposited on the substrate surface to form a coating through severe plastic deformation. As a low-temperature solid-state deposition method, CS is characterized by a low deposition temperature, a low oxidation ratio of powder, a high deposition efficiency, little thermal influence on the substrate, etc., by which coatings with low porosity, high compactness, and controllable thickness can be prepared, establishing its indispensable position among coating preparation technologies.
  • 893
  • 14 Mar 2023
Topic Review
Graphene Nanoplatelets Screen-Printed on Woven and Knitted Fabrics
Although the force/pressure applied onto a textile substrate through a uniaxial compression is constant and independent of the yarn direction, it should be noted that such mechanical action causes a geometric change in the substrate, which can be identified by the reduction in its lateral thickness. Therefore, researchers investigate the influence of the fabric orientation on both knitted and woven pressure sensors, in order to generate knowledge for a better design process during textile piezoresistive sensor development.
  • 880
  • 29 Aug 2022
Topic Review
Sustainable Hydrogels from Cellulose
Hydrogels are three-dimensional, hydrophilic networks composed of a variety of polymeric materials linked by chemical (covalent bonds) or physical (non-covalent interactions) cross-linking. The unique hydrophilic nature of hydrogels provides a promising solution for food packaging systems, specifically in regulating moisture levels and serving as carriers for bioactive substances, which can greatly affect the shelf life of food products. In essence, the synthesis of cellulose-based hydrogels (CBHs) from cellulose and its derivatives has resulted in hydrogels with several appealing features such as flexibility, water absorption, swelling capacity, biocompatibility, biodegradability, stimuli sensitivity, and cost-effectiveness.
  • 877
  • 07 Jun 2023
  • Page
  • of
  • 12
Academic Video Service