ZnO/Si Heterojunction Solar Cell

Created by: Babar Hussain

For further uptake in the solar cell industry, n-ZnO/p-Si single heterojunction solar cell drew much attention of research community in recent years. This study reports the influence of bandgap and/or electron affinity tuning of zinc oxide on the performance of n-ZnO/p-Si single heterojunction photovoltaic cell using PC1D simulations. The simulations results reveal that the open circuit voltage and fill factor can be improved significantly by optimizing valence-band and conduction-band off-sets by engineering bandgap and electron affinity of zinc oxide. The overall conversion efficiency of more than 20.3% can be achieved without additional cost or any change in device structure. It has been found that the improvement in efficiency is mainly due to reduction in conduction band offset that has a significant influence on minority carrier current.

Table of Content [Hide]

Schematic of the n-ZnO/p-Si single heterojunction solar cell structure

Schematic of the n-ZnO/p-Si single heterojunction solar cell structure.


Schematic diagram of n-ZnO/p-Si heterojunction band-bending. χ denotes electron affinity of the material mentioned in the subscript

Schematic diagram of n-ZnO/p-Si heterojunction band-bending. χ denotes electron affinity of the material mentioned in the subscript.



Influence of electron affinity of ZnO (bandgap: 3.27 eV) on the efficiency of n-ZnO/p-Si heterojunction solar cell using PC1D simulations

Influence of electron affinity of ZnO (bandgap: 3.27 eV) on the efficiency of n-ZnO/p-Si heterojunction solar cell using PC1D simulations.



Change in overall conversion efficiency of n-ZnO/p-Si solar cell with modification of bandgap value of ZnO for three different values of electron affinity (EA). Few data points have been interpolated because numerical solution was not converging for those points in PC1D.



  1. Hussain, B.; Ebong, A.; Ferguson, I. Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Energy Mater. Sol. Cells 2015, 139, 95–100.
  2. Baturay, S.; Ocak, Y.S.; Kaya, D. The effect of Gd doping on the electrical and photoelectrical properties of Gd:ZnO/p-Si heterojunctions. Alloys Compd. 2015, 645, 29–33.
  3. Ren, X.; Zi, W.; Ma, Q.; Xiao, F.; Gao, F.; Hu, S.; Zhou, Y.; Liu, S. (Frank) Topology and texture controlled ZnO thin film electrodeposition for superior solar cell efficiency. Energy Mater. Sol. Cells 2015, 134, 54–59.
  4. Zeng, X.; Wen, X.; Sun, X.; Liao, W.; Wen, Y. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells. Thin Solid Films 2016, 605, 257–262.
  5. Das, S.C.; Green, R.J.; Podder, J.; Regier, T.Z.; Chang, G.S.; Moewes, A. Band Gap Tuning in ZnO Through Ni Doping via Spray Pyrolysis. Phys. Chem. C 2013, 117, 12745–12753.
  6. Mayer, M.A.; Speaks, D.T.; Yu, K.M.; Mao, S.S.; Haller, E.E.; Walukiewicz, W. Band structure engineering of ZnO1-xSex alloys. In Proceedings of SPIE Volume 7770, Solar Hydrogen and Nanotechnology V, San Diego, CA, USA, 24 August 2010; SPIE: .
  7. Mayer, M.A.; Yu, K.M.; Haller, E.E.; Walukiewicz, W. Tuning structural, electrical, and optical properties of oxide alloys: ZnO1−xSex. Appl. Phys. 2012, 111, 113505.
  8. Untila, G.; Kost, T.; Chebotareva, A. Bifacial 8.3%/5.4% front/rear efficiency ZnO:Al/n-Si heterojunction solar cell produced by spray pyrolysis. Energy 2016, 127, 184–197.
  9. Ahmmed, S.; Aktar, A.; Kuddus, A.; Ismail, A.B.M. Fabrication of Thin-Film Solar Cell using Spin Coated Zinc Oxide and Silicon Nanoparticles Doped Cupric Oxide Heterojunction. In Proceedings of 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8–9 February ; pp. 1–4.
  10. Chen, L.; Chen, X.; Liu, Y.; Zhao, Y.; Zhang, X. Research on ZnO/Si heterojunction solar cells. Semicond. 2017, 38, 54005.
  11. Shokeen, P.; Jain, A.; Kapoor, A. Embedded vertical dual of silver nanoparticles for improved ZnO/Si heterojunction solar cells. Nanophoton 2017, 11, 1.
  12. Hussain, B. Improvement in open circuit voltage of n-ZnO/p-Si solar cell by using amorphous-ZnO at the interface. Photovolt: Res. Appl. 2017, 25, 919–927.
  13. Pietruszka, R.; Witkowski, B.; Zielony, E.; Placzek-Popko, E.; Godlewski, M.; Gwozdz, K. ZnO/Si heterojunction solar cell fabricated by atomic layer deposition and hydrothermal methods. Energy 2017, 155, 1282–1288.
  14. Ziani, N.; Belkaid, M. S. Computer modeling zinc oxide/silicon heterojunction solar cells. J.Nano Electron. Phys. 2018, 10, 06002.
  15. Vallisree, S.; Thangavel, R.; Lenka, T. R. Modelling, simulation, optimization of Si/ZnO and Si/ZnMgO heterojunction solar cells. Adv. Mater. Express 2019, 6, 1–20.
  16. Askari, S.S.A.; Kumar, M.; Das, M.K. Numerical study on the interface properties of a ZnO/c-Si heterojunction solar cell. Semicond. Sci. Technol., 2018, 33, 1–8,.
  17. Sundaram, K.B. Work function determination of zinc oxide films. Vac. Sci. Technol. A: Vac. Surf. Films 1997, 15, 428–430.
  18. Jiang, X.; Jia, C.L.; Szyszka, B. Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface. Phys. Lett. 2002, 80, 3090–3092.
  19. Lee, J.; Choi, Y.; Kim, J.; Park, M.; Im, S. Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films 2002, 403, 553–557.
  20. Lee, J.; Choi, Y.; Choi, W.; Yeom, H.; Yoon, Y.; Kim, J.; Im, S. Characterization of films and interfaces in n-ZnO/p-Si photodiodes. Thin Solid Films 2002, 420, 112–116.
  21. Shih, J.‐L. Zinc oxide-silicon heterojunction solar cells by sputtering. Master’s Thesis, McGill University, Montreal, QC, Canada, November 2007; p. 118.
  22. Ruan, Y.-C.; Ruan, Y.; Ching, W.Y. An effective dipole theory for band lineups in semiconductor heterojunctions. Appl. Phys. 1987, 62, 2885–2897.
  23. Gopal, V.; Singh, S.; Mehra, R. Analysis of dark current contributions in mercury cadmium telluride junction diodes. Infrared Phys. Technol. 2002, 43, 317–326.
  24. Kraut, E.A. The effect of a valence‐band offset on potential and current distributions in HgCdTe heterostructures. Vac. Sci. Technol. A: Vac. Surf. Films 1989, 7, 420–423.
  25. Hussain, B.; Ali, A.; Unsur, V.; Ebong, A. On structural and electrical characterization of n-ZnO/p-Si single heterojunction solar cell. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1898–1901.
  26. Hussain, B. Development of n-ZnO/p-Si single heterojunction solar cell with and without interfacial layer. D. Thesis, The University of North Carolina at Charlotte, Charlotte, NC, USA, 2017; p. 154.
  27. Basore, P. Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans. Electron Devices 1990, 37, 337–343.
  28. Clugston, D.; Basore, P. PC1D version 5: 32-bit solar cell modeling on personal computers. In Proceedings of Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference – 1997, Anaheim, CA, USA, 29 September–3 October 1997; doi.
  29. Zhao, J.; Sun, X.W.; Tan, S.T. Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics. IEEE Trans. Electron Devices 2009, 56, 2995–2999.







Cite this article

Babar, Hussain. ZnO/Si Heterojunction Solar Cell, Encyclopedia, 2019, v2, Available online: https://encyclopedia.pub/126