To determine whether (or not) the intrinsic predictability limit of the atmosphere is two weeks and whether (or not) Lorenz’s approaches support this limit, this video discusses the following topics: (A). The Lorenz 1963 model qualitatively revealed the essence of finite predictability within a chaotic system such as the atmosphere. However, the Lorenz 1963 model did not determine a precise limit for atmospheric predictability. (B). In the 1960s, using real-world models, the two-week predictability limit was originally estimated based on a doubling time of five days [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16].
References
- Charney, J. G., R. G. Fleagle, V. E. Lally, H. Riehl, and D. Q. Wark, 1966: The feasibility of a global observation and analysis experiment. Bull. Amer. Meteor. Soc., 47, 200–220.
- GARP, 1969: GARP topics. Bull. Amer. Meteor. Soc., 50, 136–141.
- Lorenz, E.N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.
- Lorenz, E. N., 1969a: Studies of atmospheric predictability. [Part 1] [Part 2] [Part 3] [Part 4] Final Report, February, Statistical Forecasting Project. Air Force Research Laboratories, Office of Aerospace Research, USAF,Bedford, MA, 145 pp.
- Lorenz, E. N., 1969b: Three approaches to atmospheric predictability. Bull. Amer. Meteor. Soc., 50, 345-351.
- Lorenz, E. N., 1969c: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636-646.
- Lorenz, E. N., 1969d: The predictability of a flow which possesses many scales of motion. Tellus, 21, 19 pp.
- Lorenz, E. N., 1969e: How much better can weather prediction become? MIT Technology Review, July/August, 39-49.
- Lorenz, E. N., 1969f: The nature of the global circulation of the atmosphere: a present view. The Global Circulation of the Atmosphere, London, Roy. Meteor. Soc., 3-23.
- Lorenz, E., 1972: Limits of meteorological predictability. Prepared for the American Meteorological Society, February. (unpublished, available from https://eapsweb.mit.edu/sites/default/files/Limits_of_Meteorological_Predictability_Feb1972.pdf)
- Shen, B.-W., R. A. Pielke Sr., X. Zeng, and X. Zeng, 2023b: Lorenz’s View on the Predictability Limit. Encyclopedia 2023, 3(3), 887-899; https://doi.org/10.3390/encyclopedia3030063
- Bo-Wen Shen; A Review of Lorenz’s Models from 1960 to 2008. Int. J. Bifurc. Chaos 2023, 33, ., .
- Shen, B.-W., R. A. Pielke Sr. and X. Zeng, 2023a: The 50th Anniversary of the Metaphorical Butterfly Effect since Lorenz (1972): Special Issue on Multistability, Multiscale Predictability, and Sensitivity in Numerical Models. [Editorial] Atmosphere 2023, 14(8), 1279; https://doi.org/10.3390/atmos14081279 (22 journal pages)
- Shen, B.-W.; Pielke, R.A., Sr.; Zeng, X., 2022a: One Saddle Point and Two Types of Sensitivities Within the Lorenz 1963 and 1969 Models. Atmosphere, 13(5), 753.
- Shen, B.-W., R. A. Pielke Sr., X. Zeng, J. Cui, S. Faghih-Naini, W. Paxson, A. Kesarkar, X. Zeng, R. Atlas, 2022b: The Dual Nature of Chaos and Order in the Atmosphere. Atmosphere 13, no. 11: 1892. https://doi.org/10.3390/atmos13111892.
- Shen, B.-W.; Pielke, R.A., Sr.; Zeng, X.; Baik, J.-J.; Faghih-Naini, S.; Cui, J.; Atlas, R. 2021: Is Weather Chaotic? Coexistence of Chaos and Order within a Generalized Lorenz Model. Bull. Am. Meteorol. Soc., 2, E148–E158. https://doi.org/10.1175/BAMS-D-19-0165.1