Sort:
Show:
Page Size:
Topic review
Updated time: 29 Oct 2020
Submitted by: Sungsu Park
Definition: An in vitro screening system for anti-cancer drugs cannot exactly reflect the efficacy of drugs in vivo, without mimicking the tumour microenvironment (TME), which comprises cancer cells interacting with blood vessels and fibroblasts. Additionally, the tumour size should be controlled to obtain reliable and quantitative drug responses. Herein, we report a bioprinting method for recapitulating the TME with a controllable spheroid size. The TME was constructed by printing a blood vessel layer consisting of fibroblasts and endothelial cells in , alginate, and fibrinogen, followed by seeding multicellular tumour spheroids (MCTSs) of glioblastoma cells (U87 MG) onto the blood vessel layer. Under MCTSs, sprouts of blood vessels were generated and surrounding MCTSs thereby increasing the spheroid size. The combined treatment involving the anti-cancer drug temozolomide (TMZ) and the angiogenic inhibitor sunitinib was more effective than TMZ alone for MCTSs surrounded by blood vessels, which indicates the feasibility of the TME for in vitro testing of drug efficacy. These results suggest that the bioprinted vascularized tumour is highly useful for understanding tumour biology, as well as for in vitro drug testing.
Unfold
Topic review
Updated time: 10 Feb 2021
Submitted by: Francesco Peri
Definition: Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that sits in the top 10 leading causes of death in the world today and is the current leading cause of death among infectious diseases. Although there is a licensed vaccine against TB, the Mycobacterium bovis bacilli Calmette–Guérin (BCG) vaccine, it has several limitations, namely its high variability of efficacy in the population and low protection against pulmonary tuberculosis. New vaccines for TB are needed. The World Health Organization (WHO) considers the development and implementation of new TB vaccines to be a priority. Subunit vaccines are promising candidates since they can overcome safety concerns and optimize antigen targeting. Nevertheless, these vaccines need adjuvants in their formulation in order to increase immunogenicity, decrease the needed antigen dose, ensure a targeted delivery and optimize the antigens delivery and interaction with the immune cells.
Unfold
Topic review
Updated time: 31 Aug 2020
Submitted by: Shima Tavakoli
Definition: Skin is the largest organ of the human body, protecting it against the external environment. Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need to be covered by skin substitutes. Tremendous progress has been made in the field of skin tissue engineering, in recent years, to develop new skin substitutes. Among them, hydrogels are one of the candidates with most potential to mimic the native skin microenvironment, due to their porous and hydrated molecular structure. They can be applied as a permanent or temporary dressing for different wounds to support the regeneration and healing of the injured epidermis, dermis, or both. Based on the material used for their fabrication, hydrogels can be subdivided into two main groups—natural and synthetic. Moreover, hydrogels can be reinforced by incorporating nanoparticles to obtain “in situ” hybrid hydrogels, showing superior properties and tailored functionality. In addition, different sensors can be embedded in hydrogel wound dressings to provide real-time information about the wound environment. This review focuses on the most recent developments in the field of hydrogel-based skin substitutes for skin replacement. In particular, we discuss the synthesis, fabrication, and biomedical application of novel “smart” hydrogels.
Unfold
Topic review
Updated time: 27 Oct 2020
Submitted by: Farid Menaa
Definition: Metal nanoparticles (NPs) have received much attention for potential applications in medicine (mainly in oncology, radiology and infectiology), due to their intriguing chemical, electronical, catalytical, and optical properties such as surface plasmon resonance (SPR) effect. They also offer ease in controlled synthesis and surface modification (e.g., tailored properties conferred by capping/protecting agents including N-, P-, COOH-, SH-containing molecules and polymers such as thiol, disulfide, ammonium, amine, and multidentate carboxylate), which allows (i) tuning their size and shape (e.g., star-shaped and/or branched) (ii) improving their stability, monodispersity, chemical miscibility, and activity, (iii) avoiding their aggregation and oxidation over time, (iv) increasing their yield and purity. The bottom-up approach, where the metal ions are reduced in the NPs grown in the presence of capping ligands, has been widely used compared to the top-down approach. Besides the physical and chemical synthesis methods, the biological method is gaining much consideration. Indeed, several drawbacks have been reported for the synthesis of NPs via physical (e.g., irradiation, ultrasonication) and chemical (e.g., electrochemisty, reduction by chemicals such as trisodium citrate or ascorbic acid) methods (e.g., cost, and/ortoxicity due to use of hazardous solvents, low production rate, use of huge amount of energy). However, (organic or inorganic) eco-friendly NPs synthesis exhibits a sustainable, safe, and economical solution. Thereby, a relatively new trend for fast and valuable NPs synthesis from (live or dead) algae (i.e., microalgae, macroalgae and cyanobacteria) has been observed, especially because of its massive presence on the Earth's crust and their unique properties (e.g., capacity to accumulate and reduce metallic ions, fast propagation). This work highlights affordable, fast, eco-friendly, efficient and safe strategies to produce nanoparticles for theranostic purposes.
Unfold
Topic review
Updated time: 21 Dec 2020
Submitted by: Francesca Boccafoschi
Definition: Hydrogels are three-dimensional (3D) materials able to absorb and retain water in large amounts while maintaining their structural stability. Due to their considerable biocompatibility and similarity with the body’s tissues, hydrogels are one of the most promising groups of biomaterials. The main application of these hydrogels is in regenerative medicine, in which they allow the formation of an environment suitable for cell differentiation and growth. (Draft for definition)
Unfold
Topic review
Updated time: 23 Sep 2020
Submitted by: Diaconeasa Zorita
Definition: Anthocyanins are water-soluble vacuolar pigments that occur ubiquitously in the plant kingdom, and they are widely distributed in fruits and vegetables as glycosides, having different sugars, such as glucose, rhamnose, xylose or arabinose, attached to an aglycon nucleus. Till now have been shown to haveantioxidantpropertiesin vitro and in vivo. This work aim to provide an up-to-date overview regarding anthocyanins as functional molecules and their chemopreventive effects on melanoma in vitro and in vivo as well as a comprehensive description of major sources of anthocyanins. Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins’ preventative and inhibitory effects, underlying molecular mechanisms, and such. However, there is no targeted review available regarding the anticarcinogenic effects of dietary anthocyanins on skin cancers. If diagnosed at the early stages, the survival rate of skin cancer is quite high. Nevertheless, the metastatic form has a short prognosis. In fact, the incidence of melanoma skin cancer, the type with high mortality, has increased exponentially over the last 30 years, causing the majority of skin cancer deaths. Malignant melanoma is considered a highly destructive type of skin cancer due to its particular capacity to grow and spread faster than any other type of cancers. Plants, in general, have been used in disease treatment for a long time, and medicinal plants are commonly a part of anticancer drugs on the market.
Unfold
Topic review
Updated time: 30 Oct 2020
Submitted by: Tetsuya Okuda
Definition: Glycosphingolipids containing very-long-chain fatty acids (VLCFAs) regulate several immune responses, such as cytokine production, immune signaling, and antibody induction. Here, we report that immunization with glycosphingolipids containing-VLCFAs can efficiently induce the production of anti-glycan antibodies by B cells.
Unfold
Topic review
Updated time: 10 Jan 2021
Definition: Mitochondria produce adenosine triphosphate (ATP) while also generating high amounts of reactive oxygen species (ROS) derived from oxygen metabolism. ROS are small but highly reactive molecules that can be detrimental if unregulated. While normally functioning mitochondria produce molecules that counteract ROS production, an imbalance between the amount of ROS produced in the mitochondria and the capacity of the cell to counteract them leads to oxidative stress and ultimately to mitochondrial dysfunction. This dysfunction impairs cellular functions through reduced ATP output and/or increased oxidative stress. Mitochondrial dysfunction may also lead to poor oocyte quality and embryo development, ultimately affecting pregnancy outcomes. Improving mitochondrial function through antioxidant supplementation may enhance reproductive performance. Recent studies suggest that antioxidants may treat infertility by restoring mitochondrial function and promoting mitochondrial biogenesis. Antioxidant properties of coenzyme-Q10, resveratrol, melatonin and several vitamins have been evaluated in the human oocyte, although their direct action on mitochondrial function has yet to be elucidated.
Unfold
Topic review
Updated time: 09 Oct 2020
Submitted by: Syed Shams ul Hassan
Definition: Green algae has been always renowned for its potent pharmacological and nutraceutical applications. Besides, anti-cancer, anti-bacterial and anti-oxidant properties, Recently published reports mentioning the potent anti-viral effects of green algae against the deadly virus SARS-CoV-2(COVID-19) has attracted the attention of researchers towards green algae.
Unfold
Topic review
Updated time: 01 Nov 2020
Submitted by: Lucie Bacakova
Definition: Nanocellulose/nanocarbon composites are newly-emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as “classical” carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distribute the carbon nanoparticles in aqueous environment. Nanocellulose/nanocarbon composites can be prepared with many advantageous properties, such as high mechanical strength, flexibility, stretchability, tunable thermal and electrical conductivity, tunable optical transparency, photodynamic and photothermal activity, nanoporous character and high adsorption capacity. They are therefore promising for a wide range of industrial applications, such as energy generation, storage and conversion, water purification, food packaging, construction of fire retardants and shape memory devices. They also hold great promise for biomedical applications, such as radical scavenging, photodynamic and photothermal therapy of tumors and microbial infections, drug delivery, biosensorics, isolation of various biomolecules, electrical stimulation of damaged tissues (e.g. cardiac, neural), neural and bone tissue engineering, engineering of blood vessels and advanced wound dressing, e.g. with antimicrobial and antitumor activity. However, the potential cytotoxicity and immunogenicity of the composites and their components must also be taken into account.
Unfold
  • Page
  • of
  • 16