Sort:
Show:
Page Size:
Topic review
Updated time: 01 Nov 2020
Submitted by: Yi-Kuang Yen
Definition: A graphene and poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) modified conductive paper-based electrochemical impedance spectroscopy (EIS) aptasensor has been successfully fabricated by a simple and continuous coating process. A graphene/PEDOT:PSS modified paper electrode forms the nanocomposite providing a conductive and sensitive substrate for further aptamer functionalization of the biosensor. This low-cost paper-based aptasensor exhibits its sensitivity to carcinoembryonic antigens (CEA) in standard buffer solutions and human serum samples in a linear range of 0.77–14 ng·mL−1. The limit of detection (LOD) is found to be 0.45 ng·mL−1and 1.06 ng·mL−1for CEA in both samples, separately. This aptamer-based sensing device was also evaluated and received a good correlation with the immunoassay detection method. The proposed paper-based aptasensor has demonstrated its potential as a rapid simple point-of-care analytical platform for early cancer diagnosis in less developed areas where manufacturing facilities, analytical instruments, and trained specialists are limited.
Unfold
Topic review
Updated time: 30 Jun 2021
Submitted by: Haradhan Kolya
Definition: Nowadays, arsenic (III) contamination of drinking water is a global issue. Laboratory and instrument-based techniques are typically used to detect arsenic in water, with an accuracy of 1 ppb. However, such detection methods require a laboratory-based environment, skilled labor, and additional costs for setup. As a result, several metal-based nanoparticles have been studied to prepare a cost-effective and straightforward detector for arsenic (III) ions. Among the developed strategies, colorimetric detection is one of the simplest methods to detect arsenic (III) in water. Several portable digital detection technologies make nanoparticle-based colorimetric detectors useful for on-site arsenic detection.
Unfold
Topic review
Updated time: 18 Jan 2021
Submitted by: Gregor Marolt
Definition: Phytate is a six-fold dihydrogenphosphate ester of myo‑inositol or cis-1,2,3,5-trans-4,6-cyclohexanehexol which is the most abundant of nine possible isomers of inositol (Ins). Myo-orientation is also found in the case of phytic acid, which is due to the fact that the maximal number (i.e., five out of six) of phosphate groups are present in thermodynamically stabilized equatorial position. However, the molecule can be inverted from equatorial (1a5e) to the axial (5a1e) orientation between pH 9.0 and pH 9.5.
Unfold
Topic review
Updated time: 11 Mar 2021
Submitted by: Rimadani Pratiwi
Definition: Codeine is derived from morphine, an opioid analgesic, and has weaker analgesic and sedative effects than the parent molecule. This weak opioid is commonly used in combination with other drugs for over-the-counter cough relief medication. Due to the psychoactive properties of opioid drugs, the easily obtained codeine often becomes subject to misuse. Codeine misuse has emerged as a concerning public health issue due to its associated adverse effects such as headache, nausea, vomiting, and hemorrhage. Thus, it is very important to develop reliable analytical techniques to detect codeine for both quality control of pharmaceutical formulations and identifying drug misuse in the community. This review aims to provide critical outlooks on analytical methods napplicable to the determination of codeine.
Unfold
Topic review
Updated time: 15 Dec 2020
Submitted by: Nurhasliza Zolkefli
Definition: Researchers are continuously rallying to enhance the detection of causal source for water pollution through either conventional or mostly advanced approaches focusing on spectrometry, high-throughput sequencing, and flow cytometry technology among others. From this review’s perspective, each pollution evaluation technology has its own advantages and it would be beneficial for several aspects of pollutants assessments to be combined and established as a complementary package for a better aquatic environmental management in the long run.
Unfold
Topic review
Updated time: 25 May 2021
Submitted by: Lillian Barros
Definition: Food processing generates a large amount of bio-residues, which have become the focus of different studies aimed at valorizing this low-cost source of bioactive compounds. High fruit consumption is associated with beneficial health effects and, therefore, bio-waste and its constituents arouse therapeutic interest.
Unfold
Topic review
Updated time: 30 Apr 2021
Submitted by: Anurag Malik
Definition: All the research pertaining to the detection and identification of minute peptides (<4 amino acids) present in multifarious mixtures are in their early stages because of a lack of stringent peptide identification methodologies. Precise amendments like discerned censoring of ions against previously identified sequences of peptides can help overcome the aforementioned issues faced at times of optimization procedures during or after MS analysis. A state-of-the-art genesis in structure-informedpeptide identification and quantification methodologies can be guaranteed by added enrichment in the sensitivity and resolving capacity of MS, in conjunction with novel cutting edge ionization techniques. Modernization of the software for foodomics and peptidomics research and peptide identification is needed. Also, explicit and coherent structure identification in common and especially in synchronization with LC-MS requires significant attention. A continuous focus will be given to understanding of the biochemical functions of milk ingredients and their dietary implications by using a variety of powerful tools like -omics, cell models, gut microbiome research and imaging. The introduction of innovative facilities including is an absolute requirement for the development of approaches, such as proteomics, recombinant enzymes and microbial fermentation to study and improve the metabolic and health consequences of the various roles of bioactive peptides throughout the expression of genes. Consequently, the formulation of products incorporating bioactive peptides should examine the allergenicity, toxicity and stability of the a ected metabolic functions during gastrointestinal digestion. Despite considerable progress in the isolation, purification and assessment of bioactivities of BP from various natural sources, several hurdles still remain to be overcome, particularly technological advancements to produce them on a broad scale without losing activity. In conclusion, milk-derived bioactive peptides o er substantial future prospects for product development to support health, with their multifunctional assets.
Topic review
Updated time: 20 Oct 2020
Submitted by: Michael Schoening
Definition: Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.
Topic review
Updated time: 24 Jul 2020
Submitted by: Sammer Ul Hassan
Definition: Point-of-care (POC) or near-patient testing allows clinicians to accurately achieve real-time diagnostic results performed at or near to the patient site. The outlook of POC devices is to provide quicker analyses that can lead to well-informed clinical decisions and hence improve the health of patients at the point-of-need. Microfluidics plays an important role in the development of POC devices. However, requirements of handling expertise, pumping systems and complex fluidic controls make the technology unaffordable to the current healthcare systems in the world. In recent years, capillary-driven flow microfluidics has emerged as an attractive microfluidic-based technology to overcome these limitations by offering robust, cost-effective and simple-to-operate devices. The internal wall of the microchannels can be pre-coated with reagents, and by merely dipping the device into the patient sample, the sample can be loaded into the microchannel driven by capillary forces and can be detected via handheld or smartphone-based detectors. The capabilities of capillary-driven flow devices have not been fully exploited in developing POC diagnostics, especially for antimicrobial resistance studies in clinical settings. The purpose of this review is to open up this field of microfluidics to the ever-expanding microfluidic-based scientific community.
Unfold
Topic review Peer-reviewed
Updated time: 27 Jan 2021
Submitted by: Anastasios Zouboulis
Definition: Catalytic membrane ozonation is a hybrid process that combines membrane filtration and catalytic ozonation. The membrane deposited with an appropriate solid material acts as catalyst. As a consequence, the catalytic membrane contactor can act simultaneously as contactor (i.e., improving the transfer/dissolution of gaseous ozone into the liquid phase), as well as reactor (i.e., oxidizing the organic compounds). It can be used in water and wastewater treatment limiting the disadvantages of membrane filtration (i.e., lower removal rates of emerging contaminants or fouling occurrence) and ozonation (i.e., selective oxidation, low mineralization rates, or bromate (BrO3−) formation). The catalytic membrane ozonation process can enhance the removal of micropollutants and bacteria, inhibit or decrease the BrO3− formation and additionally, restrict the membrane fouling (i.e., the major/common problem of membranes’ use). Nevertheless, the higher operational cost is the main drawback of these processes.
Unfold
  • Page
  • of
  • 8