Page Size:
Submitted by: Diana Elena Ciolacu
Hydrogels, three-dimensional (3D) polymer networks, present unique properties, like biocompatibility, biodegradability, tunable mechanical properties, sensitivity to various stimuli, the capacity to encapsulate different therapeutic agents, and the ability of controlled release of the drugs.
Submitted by: Anchun Mo
Hydrogel is a polymer matrix containing a large amount of water. It is similar to extracellular matrix components. It comes into contact with blood, body fluids, and human tissues without affecting the metabolism of organisms. It can be applied to bone and cartilage tissues. 
Submitted by: Carlo Barone
Electric noise spectroscopy is a non-destructive and a very sensitive method for studying the dynamic behaviors of the charge carriers and the kinetic processes in several condensed matter systems, with no limitation on operating temperatures. This technique has been extensively used to investigate several perovskite compounds, manganese oxides (La1−xSrxMnO3, La0.7Ba0.3MnO3, and Pr0.7Ca0.3MnO3), and a double perovskite (Sr2FeMoO6), whose properties have recently attracted great attention.
Submitted by: Alessandro Ralls
AM is one technique which can be used to enhance the heat transfer rates of heat-exchanging devices and preserve the large sums of energy that are wasted from generated entropy and exergy.
Submitted by: Biao Ren
Caries is the most common and extensive oral chronic disease. Due to the lack of anti-caries properties, traditional caries filling materials can easily cause secondary caries and lead to treatment failure. Nanomaterials can interfere with the bacteria metabolism, inhibit the formation of biofilm, reduce demineralization, and promote remineralization, which is expected to be an effective strategy for caries management. 
Submitted by: Daniel Bassey
Ballasted railway tracks constitute the major transportation grids in many countries across the globe; they convey commuters, as well as freight and bulk cargoes, between cities, mines, farmlands, and ports . The railtrack structure can be categorised into two groups: the substructure and the superstructure. The substructure comprises the subgrade, the sub-ballast, and the ballast, while the superstructure encompasses the sleepers (timber or concrete), the fastening mechanism, and the steel rails.
Biosensors are measurement devices that can sense several biomolecules, and are widely used for the detection of relevant clinical pathogens such as bacteria and viruses, showing outstanding results. Because of the latent existing risk of facing another pandemic like the one we are living through due to COVID-19, researchers are constantly looking forward to developing new technologies for diagnosis and treatment of infections caused by different bacteria and viruses. Regarding that, nanotechnology has improved biosensors’ design and performance through the development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and electrospun nanofibers. 
The field of nanotechnology has grown over the last two decades and made the transition from the benchtop to applied technologies. Nanoscale-sized particles, or nanoparticles, have emerged as promising tools with broad applications in drug delivery, diagnostics, cosmetics and several other biological and non-biological areas. These advances lead to questions about nanoparticle safety. Despite considerable efforts to understand the toxicity and safety of these nanoparticles, many of these questions are not yet fully answered. Nevertheless, these efforts have identified several approaches to minimize and prevent nanoparticle toxicity to promote safer nanotechnology.
Submitted by: SAAD NAUMAN
Electrospinning is a versatile technique which results in the formation of a fine web of fibers. The mechanical properties of electrospun fibers depend on the choice of solution constituents, processing parameters, environmental conditions, and collector design. Once electrospun, the fibrous web has little mechanical integrity and needs post fabrication treatments for enhancing its mechanical properties. The treatment strategies include both the chemical and physical techniques. The effect of these post fabrication treatments on the properties of electrospun membranes can be assessed through either conducting tests on extracted single fiber specimens or macro scale testing on membrane specimens. The latter scenario is more common in the literature due to its simplicity and low cost.
Submitted by: Sen YAN
Wireless Body Area Network (WBAN) has attracted more and more attention in many sectors of society. As a critical component in these systems, wearable antennas suffer from several serious challenges, e.g., electromagnetic coupling between the human body and the antennas, different physical deformations, and widely varying operating environments, and thus, advanced design methods and techniques are urgently needed to alleviate these limitations. Recent developments have focused on the application of metamaterials in wearable antennas, which is a prospective area and has unique advantages.
  • Page
  • of
  • 45