Page Size:
Topic review
Updated time: 28 Jun 2021
Submitted by: Robin Zeh
Definition: A Geothermal collector system is a ground heat exchanger connected to a heat pump which provides heating energy from the ground for buildings. A Large-scale geothermal collector systems differ from small systems, which are usually built for individual buildings, in their size and complexity. Typical large-scale geothermal collector systems supply entire settlements with heating and cooling energy via 5th Generation District Heating and Cooling (5GDHC) by using the very Shallow Geothermal Potential (vSGP). They can also be constructed in multiple horizontal layers.
Topic review
Updated time: 01 Dec 2021
Submitted by: Xiangyang Song
Definition: Microbially induced carbonate precipitation (MICP) is a promising technology for solidifying sandy soil, ground improvement, repairing concrete cracks, and remediation of polluted land. By solidifying sand into soil capable of growing shrubs, MICP can facilitate peak and neutralization of CO2 emissions because each square meter of shrub can absorb 253.1 grams of CO2 per year.
Entry Collection : Environmental Sciences
Topic review Peer-reviewed
Updated time: 23 Nov 2021
Submitted by: Awais Piracha
Definition: Natural hazards are processes that serve as triggers for natural disasters. Natural hazards can be classified into six categories. Geophysical or geological hazards relate to movement in solid earth. Their examples include earthquakes and volcanic activity. Hydrological hazards relate to the movement of water and include floods, landslides, and wave action. Meteorological hazards are storms, extreme temperatures, and fog. Climatological hazards are increasingly related to climate change and include droughts and wildfires. Biological hazards are caused by exposure to living organisms and/or their toxic substances. The COVID-19 virus is an example of a biological hazard. Extraterrestrial hazards are caused by asteroids, meteoroids, and comets as they pass near earth or strike earth. In addition to local damage, they can change earth inter planetary conditions that can affect the Earth’s magnetosphere, ionosphere, and thermosphere. This entry presents an overview of origins, impacts, and management of natural disasters. It describes processes that have potential to cause natural disasters. It outlines a brief history of impacts of natural hazards on the human built environment and the common techniques adopted for natural disaster preparedness. It also lays out challenges in dealing with disasters caused by natural hazards and points to new directions in warding off the adverse impact of such disasters.
Topic review
Updated time: 17 Aug 2021
Submitted by: Jaroslaw Przewlocki
Definition: The issue of slope stability is one of the most important and yet most difficult geotechnical problems. Assessing slope stability is particularly difficult because of the many uncertainties involved in the process. To take these uncertainties into account, probabilistic methods are used, and the reliability approach is adopted. There are many methods for reliability assessment of earth slope stability. However, there is no system that would organize all of these methods in an unambiguous way. In fact, these methods can be classified in different ways: by assignment to a deterministic classification of methods, by description of uncertainties of soil parameters, by level of reliability according to the theory of reliability, etc. The huge number of articles summarizing the research in this field, but in various “disordered” directions, certainly do not facilitate the understanding or ultimately the practical application of the reliability approach by the engineer. We propose a universal classification system of reliability methods for evaluating the stability of earth slopes. This proposal is preceded by a brief literature review of both historical background and contemporary study on reliability analysis of earth slope stability.