Sort:
Show:
Page Size:
Submitted by: Yoshimi Hasegawa
A growing number of soundscape studies involving audiovisual factors have been conducted; however, their bimodal and interactive effects on indoor soundscape evaluations have not yet been thoroughly reviewed. The overarching goal of this systematic review was to develop the framework for designing sustainable indoor soundscapes by focusing on audiovisual factors and relations. A search for individual studies was conducted through three databases and search engines: Scopus, Web of Science, and PubMed. Based on the qualitative reviews of the selected thirty papers, a framework of indoor soundscape evaluation concerning visual and audiovisual indicators was proposed. Overall, the greenery factor was the most important visual variable, followed by the water features and moderating noise annoyance perceived by occupants in given indoor environments. The presence of visual information and sound-source visibility would moderate perceived noise annoyance and influence other audio-related perceptions. Furthermore, sound sources would impact multiple perceptual responses (audio, visual, cognitive, and emotional perceptions) related to the overall soundscape experiences when certain visual factors are interactively involved. The proposed framework highlights the potential use of the bimodality and interactivity of the audiovisual factors for designing indoor sound environments in more effective ways.
Submitted by: Anna Uryson
Cosmic rays were discovered over one hundred years ago but there are still unsolved problems. One of the hot problems is the origin of cosmic rays of the highest energies. Sources are still unclear and it is neither clear how particles gain ultra-high energies. Possible sources of cosmic rays at the highest energies are supermassive black holes. From this perspective we discuss in a popular form some recent developments in cosmic ray studies along with author’s recent results.The paper also offers materials for further reading.
A fundamental understanding of the growth of semiconductors is essential for the optimization of quantum dot-based optoelectronic devices. Droplet epitaxy has proven to be the successful versatile growth method for instance growing quantum dots with a small fine structure splitting for quantum information technology. Precise control and tuning of the quantum dots for various applications is only possible through a detailed understanding of the growth mechanism at the atomic level, which creates the need for atomic-scale structural and composition characterization. We present an overview of the results of detailed structural and composition analysis by cross-sectional scanning tunneling microscopy and atom probe tomography of quantum dots grown by self-assembled droplet epitaxy where we focus mainly on strain-free GaAs/AlGaAs and strained InAs/InP QDs.
Submitted by: Lee Hively
Recent tests measured an irrotational (curl-free) magnetic vector potential (A) that is contrary to classical electrodynamics (CED). A (irrotational) arises in extended electrodynamics (EED) that is derivable from the Stueckelberg Lagrangian. A (irrotational) implies an irrotational (gradient-driven) electrical current density, J. Consequently, EED is gauge-free and provably unique. EED predicts a scalar field that equals the quantity usually set to zero as the Lorenz gauge, making A and the scalar potential (F) independent and physically-measureable fields. EED predicts a scalar-longitudinal wave (SLW) that has an electric field along the direction of propagation together with the scalar field, carrying both energy and momentum. EED also predicts the scalar wave (SW) that carries energy without momentum.
Submitted by: Bernhard Roth
Optical coherence tomography (OCT) enables three-dimensional imaging with resolution on the micrometer scale. The technique relies on the time-of-flight gated detection of light scattered from a sample and has received enormous interest in applications as versatile as non-destructive testing, metrology and non-invasive medical diagnostics. However, in strongly scattering media such as biological tissue, the penetration depth and imaging resolution are limited. Combining OCT imaging with wavefront shaping approaches significantly leverages the capabilities of the technique by controlling the scattered light field through manipulation of the field incident on the sample.
Submitted by: Tareq Al-hababi
In recent decades, nonlinear damping identification (NDI) in structural dynamics has attracted wide research interests and intensive studies. Different NDI strategies, from conventional to more advanced, have been developed for a variety of structural types. With apparent advantages over classical linear methods, these strategies are able to quantify the nonlinear damping characteristics, providing powerful tools for the analysis and design of complex engineering structures.
Submitted by: Ying Liu
Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields.
Course-based Undergraduate Research Experiences (CUREs) are a proven methodology for transforming short-term study abroad to yield higher impact and quality student outcomes, especially as they relate to teaching environmental sustainability.
Submitted by: Dandan Sang
Boron-doped diamond (BDD) acts as an excellent p-type conductive material for high-temperature, high-power and radiation-proof photoelectronic devices with its large band gap at room temperature (5.47 eV) and high thermal conductivity.
Submitted by: Ihar Faniayeu
 The ability to fully control the polarization of light using chiral metadevices has drawn considerable attention in various applications of integrated photonics, communication systems, and life sciences. In this work, we propose a comprehensive approach for the design of metasurfaces with desired polarization properties for reflected and transmitted waves based on the proper spatial arrangement of chiral inclusions in the unit cell. Polarization conversion is achieved by engineering induced electric and magnetic dipole moments of the metasurface inclusions. We show that under a proper arrangement, the same inclusion can be used as a building block of metasurfaces with drastically different wave-transformation functionalities. The horizontally and vertically oriented metallic helices were used as the simplest chiral inclusions, which can be manufactured by the established 3D fabrication techniques from THz up to the visible spectral range. The proposed metadevices provide a deep understanding of the light–matter interaction for polarization conversions with helix-based structures and open the way to new possibilities of electromagnetic polarization control with advanced chiral metadevices in communication and imaging systems.
  • Page
  • of
  • 10