Sort:
Show:
Page Size:
Topic review
Updated time: 30 Mar 2021
Submitted by: Valerie Janelle
Definition: Adoptive cell immunotherapy (ACT) is a promising approach to treat a variety of pathological states, including infections as well as both solid and hematologic cancers. Immune cells in ACT can be harvested from tumor resection/biopsy, from the patient’s own blood, or donated by a fully or partially human leukocyte antigen (HLA)-matched healthy donor. These cells are then injected into the patient after minimal or more extensive ex vivo manipulations. The oldest, and arguably still one of the most effective forms of ACT, is allogeneic hematopoietic cell transplantation, which most often requires only minimal cell handling and primarily leverages immunogenetic disparities between donor and recipient to treat hematopoietic cancers
Unfold
Topic review
Updated time: 07 Apr 2021
Submitted by: Jordan Holl
Definition: With the global prevalence of type 2 diabetes mellitus steeply rising, instances of chronic, hard-healing, or non-healing diabetic wounds and ulcers are predicted to increase. The growing understanding of healing and regenerative mechanisms has elucidated critical regulators of this process, including key cellular and humoral components. Despite this, the management and successful treatment of diabetic wounds represents a significant therapeutic challenge.
Unfold
Topic review
Updated time: 04 Aug 2021
Submitted by: Haim Sohmer
Definition: Soft tissue conduction is an additional mode of auditory stimulation which can be initiated either by applying an external vibrator to skin sites not overlying skull bone such as the neck (so it is not bone conduction) or by intrinsic body vibrations resulting, for example, from the heartbeat and vocalization. The soft tissue vibrations thereby induced are conducted by the soft tissues to all parts of the body, including the walls of the external auditory canal. In order for soft tissue conduction to elicit hearing, the soft tissue vibrations which are induced must penetrate into the cochlea in order to excite the inner ear hair cells and auditory nerve fibers. This final stage can be achieved either by an osseous bone conduction mechanism, or, more likely, by the occlusion effect: the vibrations of the walls of the occluded canal induce air pressures in the canal which drive the tympanic membrane and middle ear ossicles and activate the inner ear, acting by means of a more air conduction-like mechanism. In fact, when the clinician applies his stethoscope to the body surface of his patient in order to detect heart sounds or pulmonary air flow, he is detecting soft tissue vibrations.
Unfold
Topic review
Updated time: 23 Jun 2021
Submitted by: Shomita Steiner
Definition: Collagens are the most abundant protein found throughout the body. In the healing wound, these collagens are synthesized by cells such as fibroblasts and modified into complex morphologies . The type, amount and organization of collagen changes in the healing wound and determines the tensile strength of the healed skin. Collagen III is the first to be synthesized in the early stages of wound healing and is replaced by collagen I, the dominant skin collagen. The initial random deposition of collagen during the granulation tissue formation is further enhanced by lysyl oxidase enzyme-induced covalent cross-linking. This process matures the collagen into complex structures that are reoriented for tensile strength restoration. Collagen remodeling continues for months after wound closure and the tensile strength of the repaired tissue increases to about 80–85% of normal tissue if all processes proceed without any perturbations.In the skin, the fibrillar collagens types I, III and V are the most common, followed by fibril-associated collagens type XII, XIV, XVI, and VI. The non-fibrillar collagens type IV, XVIII are found in the basement membrane of the skin
Unfold
Topic review
Updated time: 01 Sep 2021
Definition: Cytoplasmic intermediate filaments (IFs), which together with actin and microtubules form the cytoskeleton, are composed of a large and diverse family of proteins. Efforts to elucidate the molecular mechanisms responsible for IF-associated diseases increasingly point towards a major contribution of IFs to the cell’s ability to adapt, resist and respond to mechanical challenges. From these observations, which echo the impressive resilience of IFs in vitro, we here discuss the role of IFs as master integrators of cell and tissue mechanics.
Unfold
Topic review
Updated time: 15 Jul 2021
Submitted by: Qianbin Zhao
Definition: Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell–cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs.
Unfold
Topic review
Updated time: 22 Jul 2021
Submitted by: Maria Nikolova
Definition: Vacuum cathodic arc TiN coatings with overlaying TiO2 film were deposited on polished and surface roughened by electron beam modification (EBM) Ti6Al4V alloy. The substrate microtopography consisted of long grooves formed by the liner scan of the electron beam with appropriate frequencies (500 (AR500) and 850 (AR850) Hz). EBM transformed the α + β Ti6Al4V mixed structure into a single α’-martensite phase. Тhe gradient TiN/TiO2 films deposited on mechanically polished (AR) and EBM (AR500 and AR850) alloys share the same surface chemistry and composition (almost stoichiometric TiN, anatase and rutile in different ratios) but exhibit different topographies (Sa equal to approximately 0.62, 1.73, and 1.08 μm, respectively) over areas of 50 × 50 μm. Although the nanohardness of the coatings on AR500 and AR850 alloy (approximately 10.45 and 9.02 GPa, respectively) was lower than that measured on the film deposited on AR alloy (about 13.05 GPa), the hybrid surface treatment offered improvement in critical adhesive loads, coefficient of friction, and wear-resistance of the surface. In phosphate buffer saline, all coated samples showed low corrosion potentials and passivation current densities, confirming their good corrosion protection. The coated EBM samples cultured with human osteoblast-like MG63 cells demonstrated increased cell attachment, viability, and bone mineralization activity especially for the AR500-coated alloy, compared to uncoated polished alloy. The results underline the synergetic effect between the sub-micron structure and composition of TiN/TiO2 coating and microarchitecture obtained by EBM.
Unfold
Topic review
Updated time: 27 Apr 2021
Submitted by: Yogeswaran Lokanathan
Definition: Epithelial–Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks.
Unfold
Topic review
Updated time: 14 Sep 2021
Definition: The combination of cardiosphere-derived extracellular vesciles (EVs), polyethylene glycol (PEG), and cardiac extracellular matrix hydrogel (cECMH), EVs–PEG–cECMH, is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.
Unfold
Topic review
Updated time: 13 Jul 2021
Submitted by: Shakeel Ahmad
Definition: Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently.
Unfold
  • Page
  • of
  • 5