The principal objective of wastewater treatment is generally to allow human and industrial effluents to be disposed of without danger to human health or unacceptable damage to the natural environment. Typical processes that are investigated and applied to wastewater treatment can be the following: biological, adsorption, flocculation, oxidation, membranes, filtration, etc. This entry collection features information about many processes of wastewater treatment and many other related issues such as reuse, cost, fluid aspects, plants, etc.

Expand All
Topic Review
Wastewater Treatment by Natural Polymer
Water pollution caused by heavy metal ions and dyes is causing serious environmental problems. Heavy metal ions and dyes such as chromium ion (Cr(VI)) and methylene blue (MB) used in various industries are soluble in aquatic conditions. In an aquatic environment, they can be easily consumed and can cause severe health problems, including carcinogenicity and mutagenicity. Natural polymers such as lignin, cellulose, or chitosan are often used, or synthetic microspheres are modified using a bio-based polymer such as vanillin. Natural polymers meet one of the requirements to minimize the secondary pollution in that they are mostly eco-friendly and biodegradable. Besides this, natural polymers also exhibit great performance as adsorbents.
  • 18
  • 30 Jun 2022
Topic Review
Phytoremediation of Domestic Wastewater
A circular economy (CE) based strategy is essential to progress toward Sustainable Development Goals (SDG). CE is centered on the conversion of waste into meaningful products and resource efficiency with the objective of promoting resource reuse. This study presents the potential of CE approaches in the phytoremediation of wastewater and energy recovery using hydroponic tanks. The integration of phytoremediation with bioenergy, construction and lifespan of hydroponic tanks in phytoremediation of wastewater, selection of aquatic plants, and the expected challenges in the implementation of CE in phytoremediation of wastewater were discussed. It further elucidates a comprehensive circularity assessment methodology that would enable and support a strategic CE framework for phytoremediation techniques in wastewater treatment. Additionally, a complete view of the feedstock conversion process into valuable end products was discussed in this CE strategic study. The findings obtained provided insights into the relative growth rate of the plant-based biomass harvested from the phytoremediation of domestic wastewater. It also provided information on the economic and technical feasibility of wastewater phytoremediation using hydroponic tanks for simultaneous recovery of treated water and plants’ biomass to enable large-scale implementation. Furthermore, optimizing resource recovery and bioenergy generation, developing new approaches and solutions, and improving process stability would help encourage and enhance the adoption of the CE framework in the phytoremediation of domestic wastewater.
  • 22
  • 30 Jun 2022
Topic Review
On-Site Carwash Wastewater Treatment
The main pollutants in car wash wastewater are detergents, dirt, oil, and grease. Untreated wastewater released into rainwater sewer systems or other water bodies may pollute the water and generate excessive bubble foams, which negatively affects urban appearance. Car washes are divided into mechanical car washes and manual or self-service car washes. In general, car washes have a small operation and scale, occupy limited land, and cannot afford wastewater treatment costs. Therefore, most car washes are not equipped with wastewater treatment facilities. Consequently, the discharge of wastewater from car washes negatively affects the water quality in the surrounding environment and results in wasteful use of water resources. 
  • 29
  • 22 Jun 2022
Topic Review
Brine Management
Desalination brine is extremely concentrated saline water; it contains various salts, nutrients, heavy metals, organic contaminants, and microbial contaminants. Conventional disposal of desalination brine has negative impacts on natural and marine ecosystems that increase the levels of toxicity and salinity. These issues demand the development of brine management technologies that can lead to zero liquid discharge. Brine management can be productive by adopting economically feasible methodologies, which enables the recovery of valuable resources like freshwater, minerals, and energy.
  • 42
  • 20 Jun 2022
Topic Review
Catalytic Mechanism of Photocatalysts Based on GCN Heterogeneous
In the current world situation, population and industrial growth have become major problems for energy and environmental concerns. Extremely noxious pollutants such as heavy metal ions, dyes, antibiotics, phenols, and pesticides in water are the main causes behind deprived water quality leading to inadequate access to clean water. In this connection, graphite carbon nitride (GCN or g-C3N4) a nonmetallic polymeric material has been utilized extensively as a visible-light-responsive photocatalyst for a variety of environmental applications.
  • 39
  • 16 Jun 2022
Topic Review
Hydrogel Adsorbents
The performance of hydrogel adsorbents depends on the constituents of the gels and the functions produced by the polymer networks of the gels. Research on hydrogels utilizing the characteristic functions of polymer networks has increased over the last decade. The functions of polymer networks are key to the development of advanced adsorbents for the removal of various pollutants.
  • 37
  • 15 Jun 2022
Topic Review
Fundamentals of Chlorine Disinfection
Chlorine first reacts with organic and inorganic matters before pathogens inactivation. The amount of chlorine consumed in this process is termed chlorine demand. The combined chlorine that forms together with any free available chlorine in the water is called the chlorine residual. This is the component of the added chlorine that disinfects the water. Free available chlorine is formed by differences in the concentrations of hypochlorous and hypochlorite ions, a process that depends on the pH of the water. Even though the chlorination procedure is well-researched, establishing an appropriate chlorine dose remains a difficult task for many field applications. Nevertheless, the effective chlorine dose should be sufficient to destroy pathogens and oxidize the organic contaminants as well as maintain sufficient free available chlorine in the water distribution system, post-chlorination.
  • 47
  • 06 Jun 2022
Topic Review
Removal of Inorganic Nitrogen from Wastewater
Water contamination due to various nitrogenous pollutants generated from wastewater treatment plants is a crucial and ubiquitous environmental problem nowadays. Nitrogen contaminated water has manifold detrimental effects on human health as well as aquatic life. Consequently, various biological and bioelectrochemical treatment processes are employed to transform the undesirable forms of nitrogen in wastewater to safer ones for subsequent discharge.
  • 51
  • 27 May 2022
Topic Review
Artificial Neural Networks in Water Supply Systems Development
A water supply system is considered an essential service to the population as it is about providing an essential good for life. This system typically consists of several sensors, transducers, pumps, etc., and some of these elements have high costs and/or complex installation. The indirect measurement of a quantity can be used to obtain a desired variable, dispensing with the use of a specific sensor in the plant. Among the contributions of this technique is the design of the pressure controller using the adaptive control, as well as the use of an artificial neural network for the construction of nonlinear models using inherent system parameters such as pressure, engine rotation frequency and control valve angle, with the purpose of estimating the flow. 
  • 36
  • 27 May 2022
Topic Review
Hydroxyapatite and Derivatives for Photocatalytic and Antibacterial Applications
Hydroxyapatite (HAp) is an attractive bioceramic from an environmental point of view. It mainly allows ion exchange between Ca2+ and other metal ions, making it an attractive material in the photodegradation of aquatic life effluents. Strategies for the performance of HAp-based functionalized material were reported, for example, doping, immobilization, deposition, incorporation, and support. Due to the production of stoichiometric defects capable of estimating response in the presence of light (UV, visible or solar) through charge carriers' interaction and/or mobility. Its favors photocatalytic performance and positive responses in the physicochemical properties to form an effective and sustainable photocatalyst.  
  • 84
  • 26 May 2022
  • Page
  • of
  • 9