Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1185 2023-11-01 02:38:01 |
2 layout + 2 word(s) 1187 2023-11-01 02:58:34 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Truong, H.B.; Tran, T.C.P.; Nguyen, T.P.; Nguyen, T.T.N.; Oanh, D.T.; Thuy, D.T.; Nguyen, X.C. Pilot and Full-Scale Applications of P Recovery. Encyclopedia. Available online: https://encyclopedia.pub/entry/51023 (accessed on 03 May 2024).
Truong HB, Tran TCP, Nguyen TP, Nguyen TTN, Oanh DT, Thuy DT, et al. Pilot and Full-Scale Applications of P Recovery. Encyclopedia. Available at: https://encyclopedia.pub/entry/51023. Accessed May 03, 2024.
Truong, Hai Bang, Thi Cuc Phuong Tran, Thi Phuong Nguyen, Thi Thao Nguyen Nguyen, Doan Thi Oanh, Duong Thi Thuy, Xuan Cuong Nguyen. "Pilot and Full-Scale Applications of P Recovery" Encyclopedia, https://encyclopedia.pub/entry/51023 (accessed May 03, 2024).
Truong, H.B., Tran, T.C.P., Nguyen, T.P., Nguyen, T.T.N., Oanh, D.T., Thuy, D.T., & Nguyen, X.C. (2023, November 01). Pilot and Full-Scale Applications of P Recovery. In Encyclopedia. https://encyclopedia.pub/entry/51023
Truong, Hai Bang, et al. "Pilot and Full-Scale Applications of P Recovery." Encyclopedia. Web. 01 November, 2023.
Pilot and Full-Scale Applications of P Recovery
Edit

Elevated phosphorus (P) levels in water sources can result in eutrophication, which in turn causes environmental pollution and adversely affects aquatic ecosystems. Additionally, there is a risk of P depletion due to intensive exploitation and utilization. Therefore, the sustainable and efficient use of P, waste reduction, and P recovery from waste sources have become urgent priorities.

adsorption mechanism biochar phosphorus recovery waste streams

1. Integration of Biochar in Biological Filters

Biochar has been applied in pilot-scale biofilters for wastewater treatment, focusing on improving P-recovery efficiency (Table 1). Greywater treatment methods based on biochar-column filtration systems (BCFS) have gained popularity recently [1]. A pilot system repurposed greywater from a four-person household for irrigating nearby vegetables. With a 36 h retention duration, a multi-stage filtration device, including mulch, geotextile, charcoal, and gravel, removed 30.1% of total phosphorus (TP) [2]. Similarly, a filter system was implemented to treat household graywater from a family of seven in Musaffah, northeastern Jordan. This system, comprising a septic tank followed by an aerobic biochar filter, demonstrated efficient removal of 42 ± 10.8% of TP [3].
In Berlin, Germany, the Muenchehofe wastewater treatment plant conducted a ten-month pilot project to extract P from secondary wastewater, combining granular activated carbon deep layer filtration with coagulation. The project utilized two identical filter columns, each with a diameter of 0.15 m and a height of 4 m; one column utilized granular activated carbon (GAC) with quartz sand, while the other used GAC with gravel. Both configurations successfully removed P, reducing wastewater concentration to 0.1 mg/L [4]. In another innovative approach, a two-phase bio-trickling filter (BTF) system was implemented to address treatment of wastewater with elevated levels of nitrogen and P. This system incorporated sequential aerobic and anaerobic flow cell reactors, utilizing porous palm biochar as the packing material. Under optimal conditions (hydraulic retention time of 36–48 h, bicarbonate as the carbon source, and palm biochar packing), it achieved an 80% reduction in ammonium and a 68% reduction in total P [5].
A full-scale, three-stage filter was deployed to remove nitrogen and P from the effluent of anaerobic digesters in Madagascar. The system used locally available materials, including a submerged anaerobic filter containing bamboo chips for denitrification, a trickling filter made of coal granules, and a filter with scrap iron for P removal. Over 16 weeks, three parallel systems were used to treat around 70 L/day. The filters effectively removed P, chemical oxygen demand, and solids, with success rates of 31–50%, 67–75%, and 73–82%, respectively, as well as significantly transformed the nitrogen [6]. A study using bamboo biochar for improved nutrient removal in BAFs treating low C/N digested swine wastewater was implemented. The system achieved notable TP removal: 47.91% in Phase I and 53.12% in Phases II and III. Biochar in BAF encourages functional microorganism growth and enhanced microbial diversity, which are crucial for nitrogen and P removal in BAFs [7].

2. Integration of Biochar into Wetland Structures

Integrating biochar into wetland structures is one of the other promising methods for efficient P recovery (Table 1). Treating wastewater using constructed wetlands (CW) is a proven, effective technology that offers long-term solutions. Similarly, biochar provides inexpensive methods to clean wastewater and recover P with a low carbon footprint. Combining these two technologies can significantly increase a system’s effectiveness [8].
The horizontal flow CW (HFCW) using biochar as media was applied in synthetic wastewater treatment. The integrated system achieved an average removal rate of 79.5% for TP and 67.7% PO43−, surpassing the performance of wetlands using only gravel [8]. Three vertical flow CW (VFCW) columns filled with wood, corn cob biochar, and gravel have been explored as devices to recover P from anaerobically treated wastewater. It was demonstrated that the corn cob biochar VFCW column and the wood biochar VFCW column provided significantly higher treatment efficiencies for P (>71%) than did the gravel-VFCW. The enhanced pollutant removal ability of charcoal-added VFCWs was primarily due to increased adsorption capacity and microbial growth in the porous biochar media [9]. Another HFCW with electrolysis integration and biochar-modified material was investigated in a pilot-scale study. The investigation demonstrated significant enhancement of P removal (74.25%) by combining electrolysis and biochar substrate. This procedure used a sacrificial iron anode to generate ferric ions in situ, which increased P removal through chemical-based deposition and physical adsorption mechanisms. Altered by ions from the iron anode, biochar proved effective in adsorbing nitrate and P, consequently enhancing effluent water quality [10].
An enriched hemp charcoal substrate was applied to HFCW cells for the pilot-scale residential wastewater treatment. During the 7-month study period, with a mean P injection of 15.5 mg/L (after primary treatment), the biochar-added HFCW continuously decreased PO43−-P concentrations in sewage to below 2 mg/L [11]. Saeed et al. investigated pilot-scale CW systems to treat raw sewage and recover P. The results showed that vertical flow CW that was filled with bamboo and wood biochar improved P removal, as follows: an inlet P concentration of 14.1 ± 8.2 mg/L (Phase I) and 7.0 ± 2.0 mg/L (Phase II) and an outlet P concentration of 6.1 ± 4.5 to 6.9 ± 5.5 mg/L (Phase I) and 6.5 ± 3.5 to 7.8 ± 2.1 mg/L (Phase II). Green walls in urban environments can be both an aesthetic feature and of practical use in greywater treatment [12]. Sami et al. evaluated the efficiency of treating actual greywater from a city district in a pilot-scale green wall with five different filter materials as substrates (biochar, pumice, hemp fiber, spent coffee grounds, and composted fiber soil). The biochar material showed promising TP treatment efficiency, with 57% [13].
Many studies detailing biochar application for P recovery are typically conducted at the pilot stage, with full-scale publications remaining relatively rare. This underscores the need for comprehensive insights into the effectiveness, on a full-scale level, of biochar application for P recovery. Strengthening research demonstrations at a full-scale level regarding the implementation of biochar for P recovery is imperative. However, full-scale implementation can also encounter challenges, including those relevant to capacity limitations, real-world conditions, long-term performance and sustainability, economic considerations, policy aspects, and regulations. Using biochar for P treatment must align with local regulations, including those governing waste management, nutrient management plans, and environmental protection. Therefore, full-scale research results will provide valuable information to designers, builders, researchers, and managers seeking to implement P recovery using biochar on a larger scale.

References

  1. Quispe, J.I.B.; Campos, L.C.; Mašek, O.; Bogush, A. Use of biochar-based column filtration systems for greywater treatment: A systematic literature review. J. Water Process Eng. 2022, 48, 102908.
  2. Niwagaba, C.; Dinno, P.; Wamala, I.; Dalahmeh, S.; Lalander, C.; Jönsson, H. Experiences on the implementation of a pilot grey water treatment and reuse based system at a household in the slum of Kyebando-Kisalosalo, Kampala. J. Water Reuse Desalination 2014, 4, 294–307.
  3. Dalahmeh, S.S.; Lalander, C.; Pell, M.; Vinnerås, B.; Jönsson, H. Quality of greywater treated in biochar filter and risk assessment of gastroenteritis due to household exposure during maintenance and irrigation. J. Appl. Microbiol. 2016, 121, 1427–1443.
  4. Altmann, J.; Rehfeld, D.; Träder, K.; Sperlich, A.; Jekel, M. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Water Res. 2016, 92, 131–139.
  5. Li, W.; Loyola-Licea, C.; Crowley, D.E.; Ahmad, Z. Performance of a two-phase biotrickling filter packed with biochar chips for treatment of wastewater containing high nitrogen and phosphorus concentrations. Process Saf. Environ. Prot. 2016, 102, 150–158.
  6. Forbis-Stokes, A.A.; Miller, G.H.; Segretain, A.; Rabarison, F.; Andriambololona, T.; Deshusses, M.A. Nutrient removal from human fecal sludge digestate in full-scale biological filters. Chemosphere 2020, 257, 127219.
  7. Xin, X.; Liu, S.; Qin, J.; Ye, Z.; Liu, W.; Fang, S.; Yang, J. Performances of simultaneous enhanced removal of nitrogen and phosphorus via biological aerated filter with biochar as fillers under low dissolved oxygen for digested swine wastewater treatment. Bioprocess Biosyst. Eng. 2021, 44, 1741–1753.
  8. Gupta, P.; Ann, T.-W.; Lee, S.-M. Use of biochar to enhance constructed wetland performance in wastewater reclamation. Environ. Eng. Res. 2015, 21, 36–44.
  9. Kizito, S.; Lv, T.; Wu, S.; Ajmal, Z.; Luo, H.; Dong, R. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation. Sci. Total Environ. 2017, 592, 197–205.
  10. Gao, Y.; Zhang, W.; Gao, B.; Jia, W.; Miao, A.; Xiao, L.; Yang, L. Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar. Water Res. 2018, 139, 301–310.
  11. Bolton, L.; Joseph, S.; Greenway, M.; Donne, S.; Munroe, P.; Marjo, C.E. Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecol. Eng. 2019, 142, 100005.
  12. Saeed, T.; Yasmin, N.; Sun, G.; Hasnat, A. The use of biochar and crushed mortar in treatment wetlands to enhance the removal of nutrients from sewage. Environ. Sci. Pollut. Res. 2019, 26, 586–599.
  13. Sami, M.; Hedström, A.; Kvarnström, E.; McCarthy, D.T.; Herrmann, I. Greywater treatment in a green wall using different filter materials and hydraulic loading rates. J. Environ. Manag. 2023, 340, 117998.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , ,
View Times: 218
Entry Collection: Wastewater Treatment
Revisions: 2 times (View History)
Update Date: 01 Nov 2023
1000/1000