Summary

The advent of biopharmaceuticals in current medicine brought enormous benefits to the treatment of life-threatening human diseases (e.g., cancer, diabetes and neurodegenerative disorders), and improved the well-being of many people worldwide. The global portfolio of these therapeutic products include proteins and antibodies, nucleic acids, and cell-based products, and continues to expand at a rapid pace - approvals in the period 2015-2018 essentially double the typical five-yearly historical approval pace (G. Walsh, Nat. Biotechnol., 36:1136-1145, 2018) -, representing a significant share of the entire market of pharmaceuticals.

Innovation in the (bio)pharmaceutical industry has been driven towards the development of cost-effective manufacturing processes, envisaging the delivery of products in high quantity, with superior quality (purity), and high specificity, with the ultimate goal of benefiting patients. Progress in this direction have resulted from the application of novel technologies in the upstream stage (high-throughput, single-use devices, statistical optimization of media and fermentation conditions, QbD, and continuous processing), while at the downstream level, chromatography has evolved through the development of new resins and ligands, coupled with advances in process modelling, operating and control strategies.

An emerging trend is the application of alternative solvents such as ionic liquids and deep eutectic solvents, in which their structure and physicochemical properties can be tuned to address unmet needs in (bio)pharmaceutical research. These compounds may be derived from natural and reneawable sources and hold great promise in the development of efficient, sustainable and cost-effective biopharmaceuticals purification processes.

This Entry Collection aims to provide the latest progresses achieved in pharmaceuticals bioprocessing. We welcome submissions of original research, comprehensive reviews and perspectives, including, but not limited, to the following fields:

- Upstream processing (genetic engineering, systems biology, difficult-to-express proteins, expression conditions, Quality by Design approaches, process analytical technologies);

- Chromatographic purification methods (process modelling and control, continuous bioprocessing, design and characterization of resins and ligands, new formats);

- Alternative purification methods (aqueous biphasic systems, filtration, crystallization, precipitation);

- Application of neoteric solvents in upstream and downstream stages;

- Analytical characterization of biopharmaceuticals (stability, post-translational modifications, biological activity, immunogenicity); 

Expand All
Entries
Topic Review
Targeted Delivery of Exosomes to the Brain
Delivering therapeutics to the central nervous system (CNS) is difficult because of the blood–brain barrier (BBB). Therapeutic delivery across the tight junctions of the BBB can be achieved through various endogenous transportation mechanisms. Receptor-mediated transcytosis (RMT) is one of the most widely investigated and used methods. Drugs can hijack RMT by expressing specific ligands that bind to receptors mediating transcytosis, such as the transferrin receptor (TfR), low-density lipoprotein receptor (LDLR), and insulin receptor (INSR). Cell-penetrating peptides and viral components originating from neurotropic viruses can also be utilized for the efficient BBB crossing of therapeutics. Exosomes, or small extracellular vesicles, have gained attention as natural nanoparticles for treating CNS diseases, owing to their potential for natural BBB crossing and broad surface engineering capability. RMT-mediated transport of exosomes expressing ligands such as LDLR-targeting apolipoprotein B has shown promising results.
  • 2.2K
  • 13 May 2022
Topic Review
Evolution of Antimicrobial Resistance
Neisseria gonorrhoeae has become a significant global public health problem due to growing infection rates and antibiotic resistance development. In 2012, N. gonorrhoeae positive samples isolated from Southeast Asia were reported to be the first strains showing resistance to all first-line antibiotics. To date, N. gonorrhoeae’s antimicrobial resistance has since been identified against a wide range of antimicrobial drugs globally. Hence, the World Health Organization (WHO) listed N. gonorrhoeae’s drug resistance as high-priority, necessitating novel therapy development. The persistence of N. gonorrhoeae infections globally underlines the need to better understand the molecular basis of N. gonorrhoeae infection, growing antibiotic resistance, and treatment difficulties in underdeveloped countries.
  • 871
  • 11 May 2022
Topic Review
Oxidative Stress in Cancer Cell Metabolism
Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism where they adjust to the high ROS by expressing elevated levels of antioxidant proteins to detoxify them while maintaining pro-tumorigenic signaling and resistance to apoptosis. Therefore, ROS manipulation can be a potential target for cancer therapies as cancer cells present an altered redox balance in comparison to their normal counterparts.
  • 1.3K
  • 11 May 2022
Topic Review
Short Implants in Sites without Bone Augmentation
Moderate evidence exists suggesting that short implants perform as well as longer ones in the rehabilitation of edentulous sites without the need for bone augmentation. Further long-term, well-designed RCTs, however, are still needed to provide specific evidence-based clinical recommendations for extended use of short implants in non-atrophic sites. 
  • 999
  • 06 May 2022
Topic Review
Aztreonam/Avibactam
The epidemiology of infections sustained by multidrug-resistant Gram-negative bacteria is rapidly evolving. New drugs are available or are on the horizon. Most are combinations of a β-lactam and a β-lactamase inhibitor. One part is the antibiotic cefiderocol that has a peculiar antibacterial mechanism of action. Dispensing of such an armamentarium requires in-depth knowledge of their microbiological spectrum of activity, pharmacokinetic/pharmacodynamic (PK/PD) properties, and clinical study results. The following will describe the antibacterial strategy of aztreonam in combination with avibactam.
  • 2.9K
  • 09 May 2022
Topic Review
Natural Antiviral Polymers
Natural polymers or biopolymers are classified into polysaccharides, polypeptides (proteins), and nucleic acid polymers (polynucleotides). Natural polymers as components of living systems are derived from plants, animals, and microorganisms.
  • 1.4K
  • 05 May 2022
Topic Review
Synthetic Polymers
Unlike natural polymers, the chemical composition, functional group type and extent of functionalization, molecular weight, charge density and distribution, degradation and stability of synthetic polymers can be engineered to maximize antiviral activity against a specific virus type.
  • 1.7K
  • 05 May 2022
Topic Review
Nanotechnology-Assisted Cell Tracking
The beneficial effects of nanotechnology in the field of disease diagnosis and therapy depends on the evolution of innovative approaches for cell tracking in living subjects. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods as well as targeted disease approaches. In this context, the application of strategies for the biomimetic design and functionalization of nanoparticles (NP) to be used for directing cell labelling and their intracellular retention have received growing interest and require further investigation to improve direct cell tracking protocols allowing non-invasive long-term targeted monitoring through in vivo imaging.
  • 953
  • 05 May 2022
Topic Review
Biomarker-Driven Drug Development
Biomarker-driven drug development in age of personalized medicines. A biomarker life cycle is broken down into 3 stages - discovery, translation, and qualification. Researchers review current development strategies and technologies applied at each of these stages, with emphasis on the use of real-world data as an important source of supporting evidence.
  • 1.4K
  • 28 Apr 2022
Topic Review
Paracetamol
Paracetamol (acetaminophen) is one of the most commonly prescribed drugs worldwide. Synthetized over 150 years ago, paracetamol is highly efficient as analgesic and antipyretic and is on the list of the World Health Organization’s essential medicines. Paracetamol is also a hypothermic agent.
  • 1.6K
  • 28 Apr 2022
  • Page
  • of
  • 65
>>