Summary

The advent of biopharmaceuticals in current medicine brought enormous benefits to the treatment of life-threatening human diseases (e.g., cancer, diabetes and neurodegenerative disorders), and improved the well-being of many people worldwide. The global portfolio of these therapeutic products include proteins and antibodies, nucleic acids, and cell-based products, and continues to expand at a rapid pace - approvals in the period 2015-2018 essentially double the typical five-yearly historical approval pace (G. Walsh, Nat. Biotechnol., 36:1136-1145, 2018) -, representing a significant share of the entire market of pharmaceuticals.

Innovation in the (bio)pharmaceutical industry has been driven towards the development of cost-effective manufacturing processes, envisaging the delivery of products in high quantity, with superior quality (purity), and high specificity, with the ultimate goal of benefiting patients. Progress in this direction have resulted from the application of novel technologies in the upstream stage (high-throughput, single-use devices, statistical optimization of media and fermentation conditions, QbD, and continuous processing), while at the downstream level, chromatography has evolved through the development of new resins and ligands, coupled with advances in process modelling, operating and control strategies.

An emerging trend is the application of alternative solvents such as ionic liquids and deep eutectic solvents, in which their structure and physicochemical properties can be tuned to address unmet needs in (bio)pharmaceutical research. These compounds may be derived from natural and reneawable sources and hold great promise in the development of efficient, sustainable and cost-effective biopharmaceuticals purification processes.

This Entry Collection aims to provide the latest progresses achieved in pharmaceuticals bioprocessing. We welcome submissions of original research, comprehensive reviews and perspectives, including, but not limited, to the following fields:

- Upstream processing (genetic engineering, systems biology, difficult-to-express proteins, expression conditions, Quality by Design approaches, process analytical technologies);

- Chromatographic purification methods (process modelling and control, continuous bioprocessing, design and characterization of resins and ligands, new formats);

- Alternative purification methods (aqueous biphasic systems, filtration, crystallization, precipitation);

- Application of neoteric solvents in upstream and downstream stages;

- Analytical characterization of biopharmaceuticals (stability, post-translational modifications, biological activity, immunogenicity); 

Expand All
Entries
Topic Review
Antimicrobial Properties of Plant Fibers
Healthcare-associated infections (HAI), or nosocomial infections, are a global health and economic problem in developed and developing countries, particularly for immunocompromised patients in their intensive care units (ICUs) and surgical site hospital areas. Recurrent pathogens in HAIs prevail over antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. For this reason, natural antibacterial mechanisms are a viable alternative for HAI treatment. Natural fibers can inhibit bacterial growth, which can be considered a great advantage in these applications.
  • 1.2K
  • 29 Nov 2022
Topic Review
Advancements in Noble Metal Nanoparticles-Based Point-of-Care Testing
Noble metal nanoparticles (NM NPs) have been used for POC testing for decades. The most known example might be the lateral flow assay (LFA, or test strip), where Au NPs are usually utilized as colorimetric labels owing to their outstanding optical properties. Over-the-counter pregnancy tests and the recent COVID-19 antigen rapid tests are representative examples of the lateral flow assays (LFA). Over the last couple of decades, engineered NM NPs have been extensively used for the point-of-care (POC) tests of various platforms beyond the LFA, despite most of them being in early stages of commercialization. This recent NM NPs-based POC testing techniques with innovative designs are discussed.
  • 1.1K
  • 29 Nov 2022
Topic Review
Skeletal Muscle Gene Delivery
Since Jon A. Wolff found skeletal muscle cells being able to express foreign genes and Russell J. Mumper increased the gene transfection efficiency into the myocytes by adding polymers, skeletal muscles have become a potential gene delivery and expression target. Different methods have been developing to deliver transgene into skeletal muscles. Among them, viral vectors may achieve potent gene delivery efficiency. Therefore, non-viral biomaterial-mediated methods with reliable biocompatibility are promising tools for intramuscular gene delivery in situ. A series of advanced non-viral gene delivery materials and related methods have been reported, such as polymers, liposomes, cell penetrating peptides, as well as physical delivery methods.
  • 1.3K
  • 25 Nov 2022
Topic Review
Types of Membrane Vesicles Acting as Tumor Vaccines
Membrane vesicles, a group of nano- or microsized vesicles, can be internalized or interact with the recipient cells, depending on their parental cells, size, structure and content. Membrane vesicles fuse with the target cell membrane, or they bind to the receptors on the cell surface, to transfer special effects. Based on versatile features, they can modulate the functions of immune cells and therefore influence immune responses. In the field of tumor therapeutic applications, phospholipid-membrane-based nanovesicles attract increased interest. Academic institutions and industrial companies are putting in effort to design, modify and apply membrane vesicles as potential tumor vaccines contributing to tumor immunotherapy. 
  • 983
  • 28 Nov 2022
Topic Review
Monocyte in the Tumor Microenvironment of Breast Cancer
Breast cancer (BC) is well-known for being a leading cause of death worldwide. It is classified molecularly into luminal A, luminal B HER2−, luminal B HER2+, HER2+, and triple-negative breast cancer (TNBC). These subtypes differ in their prognosis; thus, understanding the tumor microenvironment (TME) makes new treatment strategies possible. The TME contains populations that exhibit anti-tumorigenic actions such as tumor-associated eosinophils. Moreover, it contains pro-tumorigenic populations such as tumor-associated neutrophils (TANs), or monocyte-derived populations. The monocyte-derived populations are tumor-associated macrophages (TAMs) and MDSCs. Thus, a monocyte can be considered a maestro within the TME. 
  • 1.2K
  • 24 Nov 2022
Topic Review
miR-21 in Kidney Injuries and Diseases
miR-21, one of the best-characterized miRNAs to date, has received much attention in renal physiology in particular given its high degree of conservation and expression in kidneys, as well as its potent pathogenic role in various debilitating renal diseases. In contrast with normal kidney function, miR-21 switches to a powerful and overactive mediator under stress conditions. In particular, miR-21 is one of the most highly upregulated miRNAs in a wide panel of tissue injuries, and may act as a cellular sensor of injuries that mediates tissue regeneration.
  • 978
  • 24 Nov 2022
Topic Review
Methods for Radiolabelling Nanoparticles
The use of radiolabelled nanoparticles (NPs) is a promising nuclear medicine tool for diagnostic and therapeutic purposes. Thanks to the heterogeneity of their material (organic or inorganic) and their unique physical and chemical characteristics, they are highly versatile for their use in several medical applications. In particular, they have shown interesting results as radiolabelled probes for positron emission tomography (PET) imaging. The high variability of NP types and the possibility to use several isotopes in the radiolabelling process implies different radiolabelling methods that have been applied.
  • 1.1K
  • 21 Nov 2022
Topic Review
Bacterial Cellulose for Wound Dressing Application
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with different advantages and disadvantages. Bacterial cellulose (BC) has received enormous interest in the cosmetic, pharmaceutical, and medical fields due to its biological, physical, and mechanical characteristics, which enable the creation of polymer composites and blends with broad applications. In the medical field, BC was at first used in wound dressings, tissue regeneration, and artificial blood vessels. This material is suitable for treating various skin diseases due its considerable fluid retention and medication loading properties. BC membranes are used as a temporary dressing for skin treatments due to their excellent fit to the body, reduction in pain, and acceleration of epithelial regeneration. BC-based composites and blends have been evaluated and synthesized both in vitro and in vivo to create an ideal microenvironment for wound healing.
  • 1.5K
  • 21 Nov 2022
Topic Review Video
Exosomes as Nanosystems of Nucleic Acids and Drugs
Exosomes are defined as a type of extracellular vesicle released when multivesicular bodies of the endocytic pathway fuse with the plasma membrane. They are characterized by their role in extracellular communication, partly due to their composition, and present the ability to recognize and interact with cells from the immune system, enabling an immune response. Their targeting capability and nanosized dimensions make them great candidates for cancer therapy. As chemotherapy is associated with cytotoxicity and multiple drug resistance, the use of exosomes targeting capabilities, able to deliver anticancer drugs specifically to cancer cells, is a great approach to overcome these disadvantages. 
  • 1.2K
  • 21 Nov 2022
Topic Review
Nanotechnology in Natural Cosmetics
Nanotechnology is a comparatively modern field in the cosmetic industry. Presently, nanotechnology is indeed important as a platform for creating science-based alternatives for advanced therapeutics and cosmetics, resolving antiaging challenges, and enhancing well-being. Nanotechnology is described as an investigation of substances on a molecular and atomic scale. Cosmeceuticals based on nanotechnology offer the benefits of product differentiation, improved bioavailability, and prolonged effects of active ingredients. 
  • 1.8K
  • 18 Nov 2022
  • Page
  • of
  • 65
>>