Summary

The advent of biopharmaceuticals in current medicine brought enormous benefits to the treatment of life-threatening human diseases (e.g., cancer, diabetes and neurodegenerative disorders), and improved the well-being of many people worldwide. The global portfolio of these therapeutic products include proteins and antibodies, nucleic acids, and cell-based products, and continues to expand at a rapid pace - approvals in the period 2015-2018 essentially double the typical five-yearly historical approval pace (G. Walsh, Nat. Biotechnol., 36:1136-1145, 2018) -, representing a significant share of the entire market of pharmaceuticals.

Innovation in the (bio)pharmaceutical industry has been driven towards the development of cost-effective manufacturing processes, envisaging the delivery of products in high quantity, with superior quality (purity), and high specificity, with the ultimate goal of benefiting patients. Progress in this direction have resulted from the application of novel technologies in the upstream stage (high-throughput, single-use devices, statistical optimization of media and fermentation conditions, QbD, and continuous processing), while at the downstream level, chromatography has evolved through the development of new resins and ligands, coupled with advances in process modelling, operating and control strategies.

An emerging trend is the application of alternative solvents such as ionic liquids and deep eutectic solvents, in which their structure and physicochemical properties can be tuned to address unmet needs in (bio)pharmaceutical research. These compounds may be derived from natural and reneawable sources and hold great promise in the development of efficient, sustainable and cost-effective biopharmaceuticals purification processes.

This Entry Collection aims to provide the latest progresses achieved in pharmaceuticals bioprocessing. We welcome submissions of original research, comprehensive reviews and perspectives, including, but not limited, to the following fields:

- Upstream processing (genetic engineering, systems biology, difficult-to-express proteins, expression conditions, Quality by Design approaches, process analytical technologies);

- Chromatographic purification methods (process modelling and control, continuous bioprocessing, design and characterization of resins and ligands, new formats);

- Alternative purification methods (aqueous biphasic systems, filtration, crystallization, precipitation);

- Application of neoteric solvents in upstream and downstream stages;

- Analytical characterization of biopharmaceuticals (stability, post-translational modifications, biological activity, immunogenicity); 

Expand All
Entries
Topic Review
Production and Recovery of Ectoine
Ectoine (CAS No.: 96702-03-3), chemically known as 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid, is a heterocyclic amino acid derivative of aspartate with a zwitterionic structure. Ectoine was first identified and isolated from a halophilic bacterium, Ectothiorhodospira halochloris.
  • 2.0K
  • 02 Feb 2023
Topic Review
Advanced Drug Delivery for Treating Sjögren’s Dry Eye
Sjögren’s syndrome is a chronic and insidious autoimmune disease characterized by lymphocyte infiltration of exocrine glands. Patients typically present with dry eye (keratoconjunctivitis sicca), dry mouth (xerostomia), and other systemic manifestations. The current management for Sjögren's syndrome dry eye (SSDE) has been ineffective as it only targets ocular surface inflammation and dryness without addressing the specific disease process. Ophthalmologists often adopt a trial-and-error approach, which allows the cycle of dry eye disease (DED) to progress and potentially cause permanent damage to the lacrimal functional unit. Topical treatments also depend on patients' ability to administer eye drops and their compliance. These limitations emphasize the need for personalized, targeted treatments that address the underlying pathophysiology of SSDE. This article aims to present new advances in ocular drug delivery for more effective treatment.
  • 1.4K
  • 10 Feb 2023
Topic Review
Hsp90α and Hsp90β
Hsp90α and Hsp90β are both ubiquitously expressed in all cell types, but assigned for distinct and irreplaceable functions. Hsp90β is essential during mouse development and Hsp90α only maintains male reproductivity in adult mice. Neither Hsp90β nor Hsp90α could substitute each other under these biological processes. Hsp90β alone maintains cell survival in culture and Hsp90α cannot substitute it. Hsp90α also has extracellular functions under stress and Hsp90β does not.
  • 1.2K
  • 02 Feb 2023
Topic Review
Plant-Based Compounds Against SARS-CoV-2
Polyphenols and alkaloids are the most widespread plant-based products with prominent properties including anti-cancer, antioxidant, antimalarial, antiviral, antibacterial, antifungal, anti-diabetic, anti-inflammatory, and anti-dengue effects. Accordingly, these phytochemicals can be promising candidates for discovering effective therapeutic regimens for SARS-CoV-2. 
  • 1.0K
  • 02 Feb 2023
Topic Review
Serratiopeptidase
Microbial products have been used for the treatment of different diseases for many centuries. The serratiopeptidase enzyme provides a new hope for COVID-19-infected patients. Anti-inflammatory drugs are easy to obtain at minimal expenditure from microbial sources. Serratia sp. is identified as one of the most efficient bacteria produced from serratiopeptidase. Screening for new and efficient bacterial strains from different sources has been of interest. Serratiopeptidase remains the most well-known anti-inflammatory drug of choice. Serratiopeptidase is a cheaper and safer anti-inflammatory drug alternative to NSAIDs.
  • 3.9K
  • 01 Feb 2023
Topic Review
Insights and Strategies of Melanoma Immunotherapy
Despite the successes and durable responses with immune checkpoint inhibitors (ICI), many cancer patients, including those with melanoma, do not derive long-term benefits from ICI therapies. The lack of predictive biomarkers to stratify patients to targeted treatments has been the driver of primary treatment failure and represents an unmet medical need in melanoma and other cancers. Understanding genomic correlations with response and resistance to ICI will enhance cancer patients’ benefits. Building on insights into interplay with the complex tumor microenvironment (TME), the ultimate goal should be assessing how the tumor ’instructs’ the local immune system to create its privileged niche with a focus on genomic reprogramming within the TME. It is hypothesized that this genomic reprogramming determines the response to ICI. Furthermore, emerging genomic signatures of ICI response, including those related to neoantigens, antigen presentation, DNA repair, and oncogenic pathways, are gaining momentum. 
  • 982
  • 31 Jan 2023
Topic Review
Optical Biosensing of Cancer Antigen 125
Cancer antigen 125 (CA-125) is a well-known oncomarker in ovarian cancer (OC) that has been widely used. CA-125 is a high-molecular-weight glycoprotein (>200 kDa) generated by normal cells in adult tissues derived from coelomic and Müllerian epithelia. CA-125 levels of less than 35 U/mL in the human body are acceptable for normal cells. Women with advanced stages of OC often show an elevated level of CA-125. Some early-stage cancers can be diagnosed via detecting the cancer antigen CA-125, such as ovarian cancer, and required treatments can be applied more efficiently. Thus, detection of CA-125 by employing various optical or electrochemical biosensors is a preliminary and crucial step to treating cancers. 
  • 1.0K
  • 28 Jan 2023
Topic Review
The Electrohydrodynamic Method for Nanomaterial Production
Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. 
  • 836
  • 28 Jan 2023
Topic Review
Enzymatic Biocatalysis for Degradation of Plastic PET
Most Polyethylene terephthalate (PET) degrading enzymes belong to the 3.40.50.1820 superfamily, according to the CATH database, since they share a conserved catalytic domain and assume the typical alpha/beta hydrolase fold. Breaking of PET bonds is typically accomplished by a catalytic triad involving a serine, a histidine and a negatively charged residue, usually an aspartate or a glutamate.
  • 1.3K
  • 29 Jan 2023
Topic Review
Aptamers in Hematologic Malignancies
Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment.
  • 1.2K
  • 19 Jan 2023
  • Page
  • of
  • 65
>>