Topic Review
Trichoderma
Trichoderma spp. has the ability to inhibit fungal plant pathogens through several mechanisms like the production of hydrolytic enzymes, mycoparasitism, coiling, and antibiosis and is therefore recommended as a potential and native biocontrol agent for effective control of soil-transmitted diseases. Various species of Trichoderma, like T. virens, T. asperellum, T. harzianum, etc., have been explored for their biocontrol activity against phytopathogens. There are different Trichoderma species and strains with respect to plant pathogens. Efforts have been made to develop effective and efficient methods, such as microencapsulation use of different polymers, adjuvants, or carriers, to increase the shelf-life and efficacy of Trichoderma formulations.
  • 210
  • 09 Nov 2023
Topic Review
Trichoderma Species as Biocontrol Inoculant in Crop Rhizosphere
The fungal species belonging to the genus Trichoderma has been globally recognized as a potential candidate of biofertilizer and biocontrol agent to prevent devastating soil-borne fungal pathogens and enhance growth and productivity of agricultural crops. The antagonistic activity of Trichoderma to pathogenic fungi is attributed to several mechanisms including antibiosis and enzymatic hydrolysis, which are largely associated with a wide range of metabolites secreted by the Trichoderma species. Besides suppressing target pathogens, several metabolites produced by Trichoderma species may act against non-pathogenic beneficial soil microbial communities and perform unintended alterations within the structures and functions of microbial communities in the crop rhizosphere. Multiple microbial interactions have been shown to enhance biocontrol efficacy in many cases as compared to bioinoculant employed alone. 
  • 226
  • 25 Jan 2024
Topic Review
Trichomonas vaginalis
In Trichomonas, the hydrogenosome, a double membrane-bounded organelle that produces ATP, also can be a good target. Other structures include mitosomes, ribosomes, and proteasomes. Metronidazole is the most frequent compound used to kill many anaerobic organisms, including Giardia and Trichomonas. It enters the cell by passive diffusion and needs to find a highly reductive environment to be reduced to the nitro radicals to be active. However, it provokes several side effects, and some strains present metronidazole resistance. Therefore, to improve the quality of the chemotherapy against parasitic protozoa is important to invest in the development of highly specific compounds that interfere with key steps of essential metabolic pathways or in the functional macromolecular complexes which are most often associated with cell structures and organelles. 
  • 524
  • 15 Nov 2022
Topic Review
Trichophyton indotineae
Trichophyton (T.) indotineae is a newly identified dermatophyte species that has been found in a near-epidemic form on the Indian subcontinent. There is evidence of its spread from the Indian subcontinent to a number of countries worldwide. The fungus is identical to genotype VIII within the T. mentagrophytes/T. interdigitale species complex, which was described in 2019 by sequencing the Internal Transcribed Spacer (ITS) region of ribosomal DNA of the dermatophyte.
  • 900
  • 27 Jul 2022
Topic Review
Triticeae CBF Gene Cluster for Frost Resistance
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. 
  • 231
  • 20 Nov 2023
Topic Review
Triticum aestivum L.
Common wheat (Triticum aestivum), one of the world’s most consumed cereal grains, is known for its uses in baking and cooking in addition to its medicinal uses. As this plant’s medical benefits are enormous and scattered, the pharmacological activities were focused, phytochemistry, and the nutritional values of Triticum aestivum. It is a good source of dietary fiber, resistant starch, phenolic acids, alkylresorcinols, lignans, and diverse antioxidant compounds such as carotenoids, tocopherols and tocotrienols. These constituents provide Triticum aestivum with a wide range of pharmacological properties, including anticancer, antimicrobial, antidiabetic, hypolipemic, antioxidant, laxative, and moisturizing effects.
  • 1.3K
  • 05 Jul 2022
Topic Review
Trypanosoma cruzi Disperse Gene Protein Family (DGF-1)
Chagas disease, caused by Trypanosoma cruzi infections, is included in the group of neglected diseases, and efforts to develop new therapeutic or immunoprevention approaches have not been successful. After the publication of the T. cruzi genome, the number of molecular and biochemical studies on this parasite has increased considerably, many of which are focused on families of variant surface proteins, especially trans-sialidases, mucins, and mucin-associated proteins. The disperse gene protein 1 family (DGF-1) is one of the most abundant families in the T. cruzi genome.
  • 303
  • 15 Mar 2023
Topic Review
Trypanosoma cruzi Congenital Transmission
Chagas disease, initiated by the etiological agent Trypanosoma cruzi, is an endemic infection in the American continent. Although vectorial transmission of T. cruzi is recognized as the main mode of infection, other routes such as congenital and blood transfusion are also documented as important methods of transmission. T. cruzi maternal–fetal transmission has been recorded in humans and examined by some investigators in naturally and experimentally infected mammals. 
  • 469
  • 08 Nov 2022
Topic Review
Vaccinium uliginosum and Vaccinium myrtillus
Vaccinium uliginosum L. (commonly known as bog bilberry) and Vaccinium myrtillus L. (commonly known as bilberry) are species of the genus Vaccinium (family Ericaceae). The red–purple–blue coloration of blueberries is attributed largely to the anthocyanins found in bilberries. Anthocyanins, known for their potent biological activity as antioxidants, have a significant involvement in the prophylaxis of cancer or other diseases, including those of metabolic origin.
  • 527
  • 06 Dec 2023
Topic Review
Veratrum californicum Alkaloids as Hedgehog Pathway Antagonists
Veratrum californicum contains steroidal alkaloids that function as inhibitors of hedgehog (Hh) signaling, a pathway involved in the growth and differentiation of cells and normal tissue development. This same Hh pathway is abnormally active for cell proliferation in more than 20 types of cancer.
  • 219
  • 08 Feb 2024
  • Page
  • of
  • 5490
Video Production Service