Topic Review
Virus Processing
The main idea behind viral processing is to stop the viruses in a given sample from contaminating the desired product. The two most widely used methods of viral processing are viral removal and viral inactivation. The former is a method in which all viruses are simply removed from the sample completely. The latter method is one in which the viruses may remain in the final product, but in a non-infective form. These techniques are used widely in the food and blood plasma industries, as those products can be harmed by the presence of viral particles. Some of the more common viruses removed by these methods are the HIV-1 and HIV-2 viruses; hepatitis A, B, and C; and parvoviruses. The methods used in the plasma industry have been summarized (Horowitz B., Minor P., Morgenthaler J. J., Burnouf T., McIntosh R., Padilla A., Thorpe R. and van Aken W. G. Who Expert Committee on Biological Standardization. World Health Organ Tech Rep Ser. 924: 1-232, 2004.) In some cases, however, it is the virus itself that is the desired product, as is often the case with the HIV. In many cases, researchers may be trying to extract the viruses from the blood for study, not specifically for blood purification. It is also common to use these types of techniques to remove particles produced as a result of viral infection.
  • 529
  • 17 Oct 2022
Topic Review
Virus Nanotechnology
Virus nanotechnology is the use of viruses as a source of nanoparticles for biomedical purposes. Viruses are made up of a genome and a capsid; and some viruses are enveloped. Most virus capsids measure between 20-500 nm in diameter. Because of their nanometer size dimensions, viruses have been considered as naturally occurring nanoparticles. Virus nanoparticles have been subject to the nanoscience and nanoengineering disciplines. Viruses can be regarded as prefabricated nanoparticles. Many different viruses have been studied for various applications in nanotechnology: for example, mammalian viruses are being developed as vectors for gene delivery, and bacteriophages and plant viruses have been used in drug delivery and imaging applications as well as in vaccines and immunotherapy intervention.
  • 1.5K
  • 15 Nov 2022
Topic Review
Virus Mutations and SARS-CoV-2
The COVID-19 virus strains were named after Greek alphabetical letters, and the designation is based on the positions and number of mutations. There are some disagreements regarding mutations belonging to specific strain groups, probably because different mutations evolved and spread further on different continents and states.
  • 389
  • 30 Jan 2022
Topic Review
Virus Monitoring Strategies for Wastewater Reuse
Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping to meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet, economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, especially viral pathogen exposure, limit the widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate the viral quality of recycled water would do much to instill greater confidence in the practice.  One of the greatest challenges of water-quality monitoring is that pathogens (including viruses as well as bacteria and protozoa) are often present at concentrations high enough to present disease risks but too low for direct detection. As a result, a variety of surrogate microorganisms are used as indicators of microbial water quality. 
  • 693
  • 22 Apr 2022
Topic Review
Virus Like Particles in Yeast
Several structural viral proteins can self-assemble to form a capsid without a viral genome. This property of viral proteins has been exploited for constructing virus-like particles (VLPs). The most important feature of VLPs is that they resemble the capsid of the original virus, but they are empty shells that do not contain the viral genome, and thus, they elicit an immune response without propagating inside the cells. VLPs have been produced in Escherichia coli and in mammalian, plant, insect, and yeast cells . 
  • 286
  • 01 Aug 2023
Topic Review
Virus Information Table
Viruses are extremely diverse in nature. Even their method of storing genetic information differs tremendously, from double-stranded DNA to negative sense RNA, as denoted in the Baltimore Classification System. Other features, such as entry and release details, or capsid structure may be important in classifying and understanding viruses.
  • 244
  • 08 Nov 2022
Topic Review
Virus Infection and Systemic Inflammation: COVID-19 and Beyond
Respiratory infections with newly emerging zoonotic viruses such as SARS-CoV-2, the etiological agent of COVID-19, often lead to the perturbation of the human innate and adaptive immune responses causing severe disease with high mortality. The responsible mechanisms are commonly virus-specific and often include either over-activated or delayed local interferon responses, which facilitate efficient viral replication in the primary target organ, systemic viral spread, and rapid onset of organ-specific and harmful inflammatory responses. Despite the distinct replication strategies, human infections with SARS-CoV-2 and highly pathogenic avian influenza viruses demonstrate remarkable similarities and differences regarding the mechanisms of immune induction, disease dynamics, as well as the long-term sequelae.
  • 544
  • 05 Aug 2022
Topic Review
Virus Inactivation by Visible Light
Bacteria and fungi are known to be inactivated not only by ultraviolet radiation but also by visible light. Viruses appear to be sensitive to visible (violet/blue) light.
  • 644
  • 28 Feb 2022
Topic Review
Virus Host Interaction and Uncoating
Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. 
  • 731
  • 03 Sep 2021
Topic Review
Virus Genetic Diversity
Virosaurus database offers curated virus sequences, available at various degree of clustering. Clustering virus sequences with different similarity scores gives an indication of the genetic diversity of a each virus, and how deep it is. For example HIV-1 and Influenza sequences present high numbers of clusters when clustered at 98% similarity. At 90% similarity, the number of  influenza virus clusters dramatically drops by a factor of about 20, when for HIV-1it drops by a factor of 2. This suggest that the diversity of HIV-1 sequence is somehow deeper that the one for influenza.
  • 921
  • 10 Nov 2020
  • Page
  • of
  • 5495
ScholarVision Creations