Topic Review
Protein Misfolding in Pregnancy
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer’s disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. 
  • 86
  • 02 Apr 2024
Topic Review
Role of Sensory Nerves in Pulmonary Fibrosis
Pulmonary fibrosis (PF) is a disease in which the lungs become scarred over time. It can result from occupational exposure, genetic defects, acute lung injury, or idiopathic causes. Sensory nerves are responsible for detecting harmful airborne stimuli and provide input to a variety of cells within the lungs, including airways and blood vessels. They play a critical role in regulating cardiopulmonary functions and maintaining homeostasis in healthy lungs. This review discusses the various effects of sensory nerve signaling in the setting of pulmonary fibrosis.
  • 45
  • 01 Apr 2024
Topic Review
Oxidative Stress and Bio-Regulation
Reactive oxygen species (ROS) and free radicals work to maintain homeostasis in the body, but their excessive production causes damage to the organism. The human body is composed of a variety of cells totaling over 60 trillion cells. Each cell performs different functions and has a unique lifespan. The lifespan of cells is preprogrammed in their genes, and the death of cells that have reached the end of their lifespan is called apoptosis. This is contrary to necrosis, which is the premature death of cells brought about by physical or scientific forces. Each species has its own unique lifespan, which in humans is estimated to be up to 120 years. Elucidating the mechanism of the death of a single cell will lead to a better understanding of human death, and, conversely, the death of a single cell will lead to exploring the mechanisms of life. In this sense, research on active oxygen and free radicals, which are implicated in biological disorders and homeostasis, requires an understanding of both the physicochemical as well as the biochemical aspects. Based on the discussion above, it is clear to see that active oxygen and free radicals have dual functions of both injuring and facilitating homeostasis in living organisms.
  • 73
  • 27 Mar 2024
Topic Review
RBPs Associated with Cardiomyopathies
Cardiomyopathies are structural and functional abnormalities of the myocardium and represent a heterogenous group of cardiac disorders, including dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), and arrhythmogenic cardiomyopathy (ACM). RNA-binding proteins (RBPs) are major regulators of gene expression at the post-transcriptional level and contribute to generating protein abundance and diversity within a cell.
  • 50
  • 22 Mar 2024
Topic Review
Mechanisms behind the Guar Drought Tolerance
Guar is an unpretentious plant and grows on both sandy and well-drained clay soils. Guar is self-pollinating with a negligible level of cross-pollination. The plants considerably vary in height (from 50 cm to 1.5 m). The stem is sturdy, becoming woody by the plant maturation. The main root is thick and tapering in its distal parts, deeply penetrating into the soil. Due to this, guar can perfectly sustain short-term drought. 
  • 105
  • 15 Mar 2024
Topic Review
Novel Biomarkers of Bone Metabolism
Bone represents a metabolically active tissue subject to continuous remodeling orchestrated by the dynamic interplay between osteoblasts and osteoclasts. These cellular processes are modulated by a complex interplay of biochemical and mechanical factors, which are instrumental in assessing bone remodeling. This comprehensive evaluation aids in detecting disorders arising from imbalances between bone formation and reabsorption. Osteoporosis, characterized by a reduction in bone mass and strength leading to heightened bone fragility and susceptibility to fractures, is one of the more prevalent chronic diseases. Some epidemiological studies, especially in patients with chronic kidney disease (CKD), have identified an association between osteoporosis and vascular calcification. Notably, low bone mineral density has been linked to an increased incidence of aortic calcification, with shared molecules, mechanisms, and pathways between the two processes. Certain molecules emerging from these shared pathways can serve as biomarkers for bone and mineral metabolism. Detecting and evaluating these alterations early is crucial, requiring the identification of biomarkers that are reliable for early intervention. While traditional biomarkers for bone remodeling and vascular calcification exist, they suffer from limitations such as low specificity, low sensitivity, and conflicting results across studies. In response, efforts are underway to explore new, more specific biomarkers that can detect alterations at earlier stages. 
  • 62
  • 05 Mar 2024
Topic Review
Potential Benefits and Risks of Statins
HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase inhibitors, commonly known as statins, are the primary treatment choice for cardiovascular diseases, which stand as the leading global cause of mortality. Statins also offer various pleiotropic effects, including improved endothelial function, anti-inflammatory properties, reduced oxidative stress, anti-thrombotic effects, and the stabilization of atherosclerotic plaques. However, the usage of statins can be accompanied by a range of adverse effects, such as the development of type 2 diabetes mellitus, muscular symptoms, liver toxicity, kidney diseases, cataracts, hemorrhagic strokes, and psychiatric complications. These issues are referred to as statin-associated symptoms (SAS) and are relatively infrequent in clinical trials, making it challenging to attribute them to statin use definitively. Therefore, these symptoms can lead to significant problems, necessitating dose adjustments or discontinuation of statin therapy.
  • 85
  • 28 Feb 2024
Topic Review
Traumatic Brain Injury Recovery with Photobiomodulation
Traumatic brain injury (TBI) remains a significant global health challenge, lacking effective pharmacological treatments. This shortcoming is attributable to TBI's heterogenous and complex pathophysiology. Photobiomodulation (PBM), which employs specific red to near infrared light wavelengths to modulate brain functions, may be a promising therapy to address TBI's complex pathophysiology in a single intervention. PBM's potential for success could be further fulfilled by optimizing the parameters such as pulse frequencies. 
  • 66
  • 28 Feb 2024
Topic Review
Central Autonomic Mechanisms in Laryngeal Activity and Vocalization
In humans, speech is a complex process that requires the coordinated involvement of various components of the phonatory system, which are monitored by the central nervous system. The larynx in particular plays a crucial role, as it enables the vocal folds to meet and converts the exhaled air from our lungs into audible sounds. Voice production requires precise and sustained exhalation, which generates an air pressure/flow that creates the pressure in the glottis required for voice production. Voluntary vocal production begins in the laryngeal motor cortex (LMC), a structure found in all mammals, although the specific location in the cortex varies in humans. The LMC interfaces with various structures of the central autonomic network associated with cardiorespiratory regulation to allow the perfect coordination between breathing and vocalization. The main subcortical structure involved in this relationship is the mesencephalic periaqueductal grey matter (PAG). The PAG is the perfect link to the autonomic pontomedullary structures such as the parabrachial complex (PBc), the Kölliker–Fuse nucleus (KF), the nucleus tractus solitarius (NTS), and the nucleus retroambiguus (nRA), which modulate cardiovascular autonomic function activity in the vasomotor centers and respiratory activity at the level of the generators of the laryngeal-respiratory motor patterns that are essential for vocalization. 
  • 57
  • 28 Feb 2024
Topic Review
Roles of Nox3 in Diseases
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. Among the Nox isoforms, the NADPH oxidase 3 is the perhaps most underrated Nox enzyme, since it was firstly discovered in the inner ear. Despite the fact that Nox3 is expressed not only in the inner ear but also in various cell types and organs, the “inner ear stigma” remains until today. However ,the involvment of Nox3 is not just limited to the inner ear but extends to various organs and the related diseases.
  • 83
  • 20 Feb 2024
  • Page
  • of
  • 32