Topic Review
Friction Stir Processing
Friction stir processing (FSP) is a material processing technique developed in 1999 derived from friction stir welding (FSW). Developed by Mishra et al., this process utilizes localized plastic deformation by rotating a specialized pin through the working piece. 
  • 2.7K
  • 22 Sep 2021
Topic Review
Shipbuilding Supply Chain 4.0
The supply chain is currently taking on a very important role in organizations seekingto improve the competitiveness and profitability of the company. Its transversal character mainly places it in an unbeatable position to achieve this role. This article, through a study of each of the key enabling technologies of Industry 4.0, aims to obtain a general overview of the current state of the art in shipbuilding adapted to these technologies. To do so, a systematic review of what the scientific community says is carried out, dividing each of the technologies into di erent categories. In addition, the global vision of countries interested in each of the enabling technologies is also studied. Both studies present a general vision to the companies of the concerns of the scientific community, thus encouraging research on the subject that is focused on the sustainability of theshipbuilding supply chain.
  • 2.7K
  • 14 Apr 2021
Topic Review
Lattice Materials
Lattice material is a cellular material consisting of a periodic network of structural elements such as rods or beams. This network of lattices exists over a wide spectrum of scale from the nanoscale to macroscale and has been applied in a wide area of applications. In the nanoscale spectrum, most of the CNT (Carbon Nano Tube) based sensors are made using lattice materials. Micro-lattices material is being developed intensively as it offers high energy absorption capability. On a macroscale, due to its high stiffness and lightweight properties, lattice materials are widely used in aerospace applications.
  • 2.7K
  • 28 Mar 2022
Topic Review
Direct Contact Condensers
Direct contact heat exchangers can be smaller, cheaper, and have simpler construction than the surface, shell, or tube heat exchangers of the same capacity and can operate in evaporation or condensation modes. For these reasons, they have many practical applications, such as water desalination, heat exchangers in power plants, or chemical engineering devices.
  • 2.7K
  • 23 Dec 2022
Topic Review
Introduction to Nanofluids
Due to the combination of thermal engineering and the rapid rise of nanotechnology research over the past two decades, novel heat transfer fluids known as “nanofluids” have emerged. A “nanofluid” is a heat transfer fluid that has 1–100 nm-sized “nanoparticles”, which are suspended nanoparticles, scattered throughout the base fluid. To increase the stability of the working fluid, it is crucial to make sure the nanoparticle size is smaller than 100 nm. Water, oils, organic liquids (such as tri-ethylene-glycols, ethylene and refrigerants) and bio-fluids polymeric solutions are the most often utilized base fluids. Numerous studies throughout the years have documented diverse nanofluid preparation methods with various nanoparticle types and their heat transfer capabilities, in addition to advancing the information about nanofluids.
  • 2.6K
  • 13 Dec 2022
Topic Review
Ultra-Precision Machining Technologies
In order to reduce the surface/subsurface damage of soft-brittle optical materials and improve their surface quality, it is necessary to carry out ultra-precision machining of soft-brittle optical materials. Common ultra-precision machining techniques for soft-brittle optical materials include abrasive-free deliquescent polishing, single-point diamond turning (SPDT), chemical mechanical polishing (CMP), ultra-precision grinding, micro-milling, ion beam figuring (IBF) and magnetorheological finishing (MRF).
  • 2.6K
  • 29 Oct 2020
Topic Review
Graphene-Coating for Efficient Electronics Cooling
Thermal management is essential in electronics, as it improves reliability and enhances performance by removing heat generated by the devices. Thermal management of handheld systems such as laptops is becoming increasingly challenging due to increasing power dissipation. The power dissipated per unit area on the laptop electronic chips is increasing while the area of the chips itself it decreasing, resulting a high heat flux that causes an increase in temperature. The increasing temperature adversely affects the performance of laptops and in many cases leads to failure through such modes as thermal fatigue and dielectric breakdown. In this work, three dimensional steady state CFD model of a laptop motherboard is presented. The model accounts for heat transfer for both natural convection and radiation to the ambient air temperature. The present CFD study allow accurate, rapid, physical modelling to make decisions on materials, components and layout beside power control feedback to achieve performance and target lifetime with reduced testing requirements. An alternative design for the cooling of laptop microprocessor using only passive cooling is proposed. The results showed that the assembled a thin plate of a copper material coated with graphene and use it as a heat sinks with the microprocessor of the laptop providing an efficient and economical solution in thermal management. Considerable drop in microprocessor temperature is obtained through the heat dissipation path suggested in the new design. The proposed passive cooling solution has the advantages of fanless operation compared to the existing active cooling solutions such as the noise-free operation, lower energy consumption and higher reliability. We hope this work may open the way for huge boost in the technology of electric cooling by innovative manufacturing techniques.
  • 2.6K
  • 28 Oct 2020
Topic Review Peer Reviewed
Low-Pressure Turbine Cooling Systems
Modern low-pressure turbine engines are equipped with casings impingement cooling systems. Those systems (called Active Clearance Control) are composed of an array of air nozzles, which are directed to strike turbine casing to absorb generated heat. As a result, the casing starts to shrink, reducing the radial gap between the sealing and rotating tip of the blade. Cooling air is delivered to the nozzles through distribution channels and collector boxes, which are connected to the main air supply duct. The application of low-pressure turbine cooling systems increases its efficiency and reduces engine fuel consumption.
  • 2.4K
  • 13 Apr 2022
Topic Review
Vegetable Oils as Lubricants
Vegetable oils have been used as metalworking fluids (MWFs) for many years, particularly in small-scale metalworking operations and in industries where environmental regulations are strict. Before the development of modern MWFs, vegetable oils were one of the most common lubricants used for metalworking tools. The use of vegetable oils can be traced back to ancient civilizations such as Egypt, Greece, and Rome, where olive oil was commonly used to lubricate metal tools and weapons. 
  • 2.4K
  • 19 Apr 2023
Topic Review
Stereolithography
Being the earliest form of Additive manufacturing, Stereolithography (SLA) fabricates 3D objects by selectively solidifying the liquid resin through photopolymerization reaction. The ability to fabricate objects with high accuracy as well as a wide variety of materials brings much attention to stereolithography. Since its invention in 1980s, SLA underwent four generations of major technological innovation over the past 40 years. These innovations have thus result in a diversifies range of stereolithography systems with dramatically improved resolution, throughput, and materials selection for creating complex 3D objects and devices. In this paper, we review the four generations stereolithography processes, which are scanning, projection, continuous and volumetric stereolithography. For each generation, representative stereolithography system configurations are also discussed in detail. In addition, other derivative technologies, such as scanning-projection, multi-material, and magnetically assisted stereolithography processes, are also included in this review.
  • 2.4K
  • 16 Sep 2020
  • Page
  • of
  • 36