Topic Review
Wearable Devices for Non-Invasive Sensing
The development of wearable sensors is aimed at enabling continuous real-time health monitoring, which leads to timely and precise diagnosis anytime and anywhere. Unlike conventional wearable sensors that are somewhat bulky, rigid, and planar, research for next-generation wearable sensors has been focused on establishing fully-wearable systems. To attain such excellent wearability while providing accurate and reliable measurements, fabrication strategies should include (1) proper choices of materials and structural designs, (2) constructing efficient wireless power and data transmission systems, and (3) developing highly-integrated sensing systems.
  • 5.3K
  • 09 Feb 2021
Topic Review
Polymer 3D Printing
Polymer 3D printing is an emerging technology with recent research translating towards increased use in diverse industries. The polymer 3D printing process works by depositing a polymer in a directed fashion to form a completed part, generally through layer by layer deposition.  Polymer printing is advantageous because it enables printing low-cost functional parts with diverse properties and capabilities. An important aspect polymer 3D printing is the consideration of materials, processes, and design strategies that all influence a parts performance. Research in materials has led to the development of polymers with advantageous characteristics for mechanics and biocompatibility, with tuning of mechanical properties achieved by altering printing process parameters. Suitable polymer printing processes include extrusion, resin, and powder 3D printing, which enable directed material deposition for the design of advantageous and customized architectures.  Through careful consideration of material, process, and design it is possible to create a 3D printed polymer part of complex geometry that is tuned for a specific application on a per-print basis.
  • 5.0K
  • 23 Jun 2021
Topic Review
Can CFD Analysis Help PEM Fuel Cell Design and Operation?
Polymer electrolyte membrane (PEM) fuel cell system is an advanced power system for the future that is sustainable, clean and environmental friendly. PEM fuel cells are growing in importance as sources of sustainable energy and will doubtless form part of the changing program of energy resources in the future. PEM fuel cells are still undergoing intense development, and the combination of new and optimized materials, improved product development, novel architectures, more efficient transport processes, and design optimization and integration are expected to lead to major gains in performance, efficiency, reliability, manufacturability and cost-effectiveness. The difficult experimental environment of PEM fuel cell systems has stimulated efforts to develop models that could simulate and predict multi-dimensional coupled transport of reactants, heat and charged species using computational fluid dynamic (CFD) technology. The strength of the CFD numerical approach is in providing detailed insight into the various transport mechanisms and their interaction, and in the possibility of performing parameters sensitivity analyses. The results of CFD analyses are relevant in: conceptual studies of new designs, detailed product development, troubleshooting, and redesign. CFD analysis complements testing and experimentation, by reduces the total effort required in the experiment design and data acquisition. Relevant case studies and recent progress in CFD techniques used in PEM fuel cell development have been presented and analyzed. The CFD models are shown to be able to provide a computer-aided tool for design and optimize future PEM fuel cell with much higher power density, long cell life, and lower cost.
  • 4.7K
  • 26 Apr 2020
Topic Review
Offshore Wind Turbine Technology
Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Structural integrity of offshore wind turbine and their blades’ aerodynamics are of particular importance, which can lead towards system-level optimal design and operation, leading to reduced maintenance costs. 
  • 4.6K
  • 20 Jan 2022
Topic Review
The Braking Torque
A disc brake is a braking system in which a disc that rotates in solidarity with the vehicle wheel is subjected to friction by brake pads with a high coefficient of friction. The brake pads are arranged in a part called the caliper, which is in turn fixed solidly to the structure of the car. A hydraulic circuit pushes the brake pads against the disc with sufficient force to transform all or part of the kinetic energy of the vehicle in movement, into heat, until it is stopped or its speed is reduced, as the case may be.
  • 4.3K
  • 27 Oct 2020
Topic Review
Defect Types and Mechanism of Wind Turbine Blades
There are two main reasons for the damage to wind turbine blades. On the one hand, the wind turbine is in a harsh external environment, and the damage faults are directly caused by external factors, such as strong wind, rain or snow, salt fog, lightning strike, freezing, sandstorm, insects, etc. The other is the invisible defects caused by process problems in the technology of man-made manufacturing. These invisible defects are subject to repeated high loads and harsh external environments during the installation and operation of the wind turbine. The gradual expansion of invisible defects can lead to damage. Due to the complexity of the blade material and structure, each damage type may be caused by a combination of causes. Different defects in the production process and different operating conditions will cause different damage types.
  • 3.9K
  • 28 Sep 2022
Topic Review
Triply Periodic Minimal Surfaces Thermal Hydraulic Effects
Triply Periodic Minimal Surfaces (TPMS) are a kind of periodic implicit surface with zero mean curvature, that is, the surfaces that locally minimize surface area for a given boundary. The TPMS is composed of infinite, non-self-intersecting, periodic surfaces in three principal directions. The TPMS networks as repeated lattice structures have attracted much research interest because they have shown better mechanical performance, mass transfer, and thermal conductivity than conventional and strut-based structures, which have been employed in different disciplines. With excellent performances in the TPMS architectures, current works have investigated the TPMS structures to utilize in a wide range of applications.
  • 3.5K
  • 29 Dec 2022
Topic Review
Rotor Eccentricity
The rotor eccentricity is idealized as static eccentricity (SE), dynamic eccentricity (DE), or mixed eccentricity (ME), as shown in. The SE indicates that the rotor and the stator centers do not coincide, and the rotor revolves the rotor center. The DE indicates that the rotor and the stator centers do not coincide, and the rotor revolves both the stator and the rotor centers.
  • 3.4K
  • 03 Aug 2021
Topic Review
Determination of Gear Mesh Stiffness
Properly designed gear geometry has a positive effect on the dynamic response of the system, which can be observed on the frequency spectrum of the investigated dynamic system. This geometry has a noticeable effect on the reduced emission of noise in around. What is manifested in the frequency spectrum of gears is mainly the effect of internal excitation caused by the mesh stiffness, which changes during the meshing and thus interferes with the course of torsional dynamic processes of the gear systems. It is therefore necessary to take into account the mesh stiffness when designing the gearbox and to incorporate its course into the dynamic equations of motion. There are various ways to visualize, simulate, and calculate the course of mesh stiffness of gearing. There are different variants of analytical calculations. One of the variants of analytical modeling is the possibility of calculating the mesh stiffness by calculating the deformation energy of individual teeth of the gear. 
  • 3.4K
  • 23 Jun 2021
Topic Review
Digital Image Correlation
Digital Image Correlation (DIC) is a non-invasive imaging technique that has been used in a significant number of research fields to measure the strain fields across the surface of a body. This entry gives a basic overview of how the DIC method came to be, both in two and three dimensions and some information about the more recent development of DIC in the X-ray spectrum. 
  • 3.2K
  • 29 Oct 2020
  • Page
  • of
  • 36