Topic Review
Ammonia Production
Ammonia is the second-largest global chemical products, utilized as agricultural fertilizer, food production, industrial materials, refrigerants, and additives. Recently, the utilization of ammonia as the energy carrier (secondary energy source) has attracted many interests, due to its high volumetric hydrogen density, low storage pressure, high stability for long-term storage, high auto-ignition temperature, low condensation pressure, and lower gas density than air. in general, ammonia production includes the currently adopted thermochemical (Haber–Bosch), electrochemical, and photochemical cycle processes. 
  • 20053
  • 20 May 2022
Topic Review
Modular Multilevel Converters
A modular multilevel converter (MMC) is an advanced voltage source converter applicable to a wide range of medium and high-voltage applications. It has competitive advantages such as quality output performance, high modularity, simple scalability, and low voltage and current rating demand for the power switches. The generalized configuration of a three-phase MMC is comprised of a DC terminal, an AC terminal, and a converting kernel involving three phase legs. Each leg/phase has two symmetric arms referred to as the upper arm and lower arm. The upper arm and lower arm contain a group of identical submodules connected in series together with a chock inductor to suppress high-frequency components in the arm current.  The research interests of MMCs are primarily associated with the topologies, mathematical modeling, output voltage and current control, submodule balancing control, circulating current control, and modulation methods. And the incorporation of wideband gap (WBG) semiconductors are prospected to facilitate the MMC application with further advantages of high-voltage and high-power operations, low power losses, high efficiency, improved reliability, and reduced module size and cooling system.
  • 7513
  • 18 Aug 2021
Topic Review
Thermoelectric Generators: Progress and Applications
A thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts. In this review, state-of-the-art thermoelectric generators, applications and recent progress are reported.
  • 5325
  • 27 Aug 2020
Topic Review
Load Frequency Control System
Power systems are complex systems that have great importance to socio-economic development due to the fact that the entire world relies on the electric network power supply for day-to-day life. Therefore, for the stable operation of power systems, several protection and control techniques are necessary. Among various power system controls, the load frequency control (LFC) is the most time-consuming control mechanism of power systems due to the involvement of mechanical parts. As the control algorithms of frequency stabilization deliver control signals in the timescale of seconds, LFC systems cannot handle complicated data validation algorithms, making them more vulnerable to disturbances and cyber-attacks. Hence advanced research is highly encouraged in the field of development of attack resilient frequency stabilization techniques and in the area of cyber-security of LFC systems.
  • 4197
  • 26 Oct 2020
Topic Review
Rotary-Percussion Drilling
The rotary-percussion drilling method is a prospective way to decrease drilling costs. It is obvious, based on literature analyses and finished geothermal drilling, that the Lublin Basin can be perceived as the one where rotary-percussion drilling can be used to drill an overburden of shale rocks. The paper explained the geology of the Lublin Basin, its’ geological structures, and the possibility of the use of drilling with a down-the-hole hammer, which could significantly decrease the cost of the whole shale gas drilling investment. Data collected from the wells drilled in the Lublin Basin were compared and analyzed to determine the viability of rotary-percussion drilling. Provided analyses showed that using the rotary-percussion drilling method in the Lublin Basin had a greater possibility of application than in other Polish shale basins (Baltic and Podlasie). 
  • 2350
  • 28 May 2021
Topic Review
Lithium-Ion Battery Fire Suppression
Lithium-ion Batteries (LiBs) hazards, techniques for mitigating risks, the suppression of LiB fires and identification of shortcomings for future improvement were thoroughly reviewed. Water is identified as an efficient cooling and suppressing agent and water mist is considered the most promising technique to extinguish LiBs fire. 
  • 2120
  • 29 Apr 2021
Topic Review
Supercritical Water Gasification (SCWG)
Gasification with supercritical water (SCWG) is a thermochemical process which, exploiting the properties of supercritical water (374.1 °C and 22.1 MPa ), allows to obtain a syngas rich in hydrogen. Both biomass and waste plastic can be used as feedstock.
  • 1740
  • 18 Sep 2020
Topic Review
Wave Energy Converter
The overview of the types of wave energy converters (WECs) are classified through operational principle, absorbing wave direction, location, and power take-off.
  • 1738
  • 20 Oct 2020
Topic Review
Agrivoltaic System
Agrivoltaic systems (AVS) offer a symbiotic strategy for co-location sustainable renewable energy and agricultural production. This is particularly important in densely populated developing and developed countries, where renewable energy development is becoming more important; however, profitable farmland must be preserved. As emphasized in the Food-Energy-Water (FEW) nexus, AVS advancements should not only focus on energy management, but also agronomic management (crop and water management). 
  • 1736
  • 05 Sep 2021
Topic Review
Biomass Gasification
Lignocellulosic gasification is a valid thermochemical approach for the conversion of organic solid matter into a gaseous mixture that is constituted of hydrogen, carbon monoxide, carbon dioxide and methane, named synthetic gas or syngas. Although about 55% of syngas is still produced from coal, biomass utilization, especially lignocellulose, is constantly growing. Indeed, gasification could be potentially applied to all different kinds of lignocellulosic biomass, unlike other conversion technologies. Moreover, in the last few decades, a wide range of applications of syngas have been intensively studied. Syngas can be directly used as a combustible substance in power plants for heat and power production (steam cycle, co-combustion, combustion in gas turbines or internal combustion engines, high temperature fuel cells), which represents the most common use of biomass-derived syngas. However, syngas also represents a platform that can be employed in a broad range of chemical and microbial processes, leading to gaseous and liquid fuels, as well as to chemicals. Chemical process research has mainly focused on transportation fuel production from syngas, such as Fischer–Tropsch liquid fuels, hydrogen, methanol, dimethyl ether (DME), mixed alcohols, and synthetic natural gas (SNG). Instead, the biochemical conversion route consists of syngas fermentation in which obligate anaerobic microorganisms convert syngas into organic acids, alcohols, and other chemicals. The most commonly used microorganisms are acetogens, which use the Wood–Ljungdahl metabolic pathway. Syngas fermentation is defined as an indirect fermentation process because biomass is not fed directly into the fermenter, but it is previously converted into syngas through gasification. 
  • 1629
  • 17 Dec 2020
  • Page
  • of
  • 38
Top
Feedback