Topic Review
Biological Nitrogen Fixation in Agriculture
Biological nitrogen fixation (BNF) is a natural process of changing atmospheric nitrogen (N2) into a simple soluble nontoxic form (NH4+ primarily) which is used by plant cell for synthesis of various biomolecules. Nitrogen fixation is one of the major sources of nitrogen for plants and a key step distributing this nutrient in the ecosystem. Optimization of BNF is critical to sustain both food production and environmental health. 
  • 1.5K
  • 17 Oct 2022
Topic Review
Biological Processes for Dairy Wastewater Treatment
Dairy wastewater (DWW) has a high fat content along with a high chemical oxygen demand (COD), which makes it problematic to dispose of. Biological treatment processes have shown great success in the remediation of this water. However, these are not without their shortfalls. A variety of biological processes have been listed here as well as suggestions to improve their effectiveness. To improve the treatment efficiency, there are two main lines of thinking: First, to optimise the process through the manipulation of the physical parameters of the systems (e.g., temperature, pH, hydraulic retention time (HRT), agitation, etc.). Second, to add either pre-treatment or post-treatment processes to the main process to increase the effectiveness of the entire process overall.
  • 158
  • 20 Feb 2024
Topic Review
Biological Processes for Hydrogen Production
Hydrogen technology has great potential as a source of clean energy. The production of green hydrogen is a desirable and beneficial way to contribute to the decarbonization of the energy sector. In response to the demand for environmentally friendly and economically feasible approaches, biohydrogen production from waste materials has attracted interest. Waste materials from industrial or municipal production can be used as low-cost substrates for biohydrogen production through microbial degradation.
  • 860
  • 13 Mar 2023
Topic Review
Biological Quality of Soils
As is it known, soil is the basis of all activity in which man is involved. At the same time, it is the key factor for the development of the life and biodiversity of the planet's flora and fauna. Hence, as result of global warming and climate change, ecological research has recently increased its importance on the bases that extensive forest areas, act as carbon sinks mitigating greenhouse gas emissions. But no less important for investigation should be to inquire under this plant cover. Because there is a totally unimaginable and diverse world that remains in constant interactions to keep alive and from the green covering habitat to the diverse forms from small mammals to man. Man in its early days learned to manage the soil with the aim of producing food. Afterwards the exponential growth of the population was produced, and a high demand for food, caused the expansion of livestock borders, caused the devastation of large areas of forests, and generated a great impact to the soil and ecosystem. As a result, the change in land use and the application of chemicals impoverished and impairs the soil and the life that inhabits it. This is why this work highlights the importance of the biological component of soil to the context of the Amazon of Ecuador. For this reason, is important to consider different organisms as Essential Indicators of Soil Quality, mainly for the tropical soil field. In order to reach this objective, we compiled information presenting it in tables. They facilitate the interpretation of the importance of species of organisms and parameters from a biological point of view. At the same time, they can be used as a theoretical basis for the development of projects and research aimed to the management of biological soil composites.
  • 1.3K
  • 30 Oct 2020
Topic Review
Biological Synthesis of Nanoparticles from Microalgae
Microalgae have been a source of useful compounds mainly used as food and dietary supplements. They have been used as a source of metabolites that can participate in the synthesis of several nanoparticles through inexpensive and environmentally friendly routes alternative to chemical synthesis.
  • 404
  • 15 Jun 2023
Topic Review
Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes
The worldwide access to pharmaceuticals and their continuous release into the environment have raised a serious global concern. Pharmaceuticals remain active even at low concentrations, therefore their occurrence in waterbodies may lead to successive deterioration of water quality with adverse impacts on the ecosystem and human health. To address this challenge, there is an evolving trend toward the search for effective methods to ensure efficient purification of both drinking water and wastewater. Biocatalytic transformation of pharmaceuticals using oxidoreductase enzymes, such as peroxidase and laccase, is a promising environmentally friendly solution for water treatment, where fungal species have been used as preferred producers due to their ligninolytic enzymatic systems.
  • 597
  • 20 Oct 2022
Topic Review
Biomarkers for Kidney-Transplant Rejection
Kidney transplantation is the preferred treatment for end-stage renal failure, but the limited availability of donors and the risk of immune rejection pose significant challenges. Early detection of acute renal rejection is a critical step to increasing the lifespan of the transplanted kidney. Investigating the clinical, genetic, and histopathological markers correlated to acute renal rejection, as well as finding noninvasive markers for early detection, is urgently needed. It is also crucial to identify which markers are associated with different types of acute renal rejection to manage treatment effectively. 
  • 128
  • 12 Sep 2023
Topic Review
Biomass Availability in Europe
Biomass has been demonstrated as a capable source of energy to fulfill the increasing demand for clean energy sources which could last a long time. Replacing fossil fuels with biomass-based ones can potentially lead to a reduction of carbon emissions, which is the main target of the EU climate strategy. Based on RED II (revised Renewable Energy Directive 2018/2001/EU) and the European Green Deal, biomass is a promising energy source for achieving carbon neutrality in the future. However, the sustainable potential of biomass resources in the forthcoming decades is still a matter of question.
  • 763
  • 15 Jul 2020
Topic Review
Biomass Feedstock
The importance of energy demands that have increased exponentially over the past century has led to the sourcing of other ideal power solutions as the potential replacement alternative to the conventional fossil fuel. However, the utilisation of fossil fuel has created severe environmental issues. The identification of other renewable sources is beneficial to replace the energy utilisation globally. Biomass is a highly favourable sustainable alternative to renewable resources that can produce cleaner, cheaper, and readily available energy sources in the future. The palm oil industry is essentially ideal for the availability of abundant biomass resources, where the multifaceted residues are vital for energy production through the conversion of biomass waste into value-added products simultaneously. This article discusses the utilisation of palm oil and its residues in the energy and transportation sector. Assessment and evaluation on the feasibility of palm oil and its residues were made on the current valorisation methods such as thermochemical and biochemical techniques. Their potential as transportation fuels were concurrently reviewed. This is followed by a discussion on future challenges of palm oil industries that will take place globally, including the prospects from government and non-government organisations for the development of palm oil as a sustainable alternative replacement to fossil fuel. Hence, this review aims to provide further insight into the possibilities of palm oil and its residues towards sustainable development with reduced environmental-related issues.
  • 1.2K
  • 29 Jul 2021
Topic Review
Biomass Feedstocks Thermochemical Conversion Processes
An effective analytical technique for biomass characterisation is inevitable for biomass utilisation in energy production. To improve biomass processing, various thermal conversion methods such as torrefaction, pyrolysis, combustion, hydrothermal liquefaction, and gasification have been widely used to improve biomass processing. Thermogravimetric analysers (TG) and gas chromatography (GC) are among the most fundamental analytical techniques utilised in biomass thermal analysis. Thus, GC and TG, in combination with MS, FTIR, or two-dimensional analysis, were used to examine the key parameters of biomass feedstock and increase the productivity of energy crops. We can also determine the optimal ratio for combining two separate biomass or coals during co-pyrolysis and co-gasification to achieve the best synergetic relationship. 
  • 1.5K
  • 18 Sep 2021
  • Page
  • of
  • 678
Video Production Service