Topic Review
Electric Mobility in Portugal
In recent years, the growing concern for air quality has led to the development of sustainable vehicles to replace conventional internal combustion engine (ICE) vehicles. Currently, the most widespread technology in Europe and Portugal is that of Battery Electric Vehicles (BEV) or plug-in HEV (PHEV) electric cars, but hydrogen-based transport has also shown significant growth in the commercialization of Fuel Cell Electric Vehicles (FCEV) and in the development of new infrastructural schemes. In the current panorama of EV, particular attention should be paid to hydrogen technology, i.e., FCEVs, which is potentially a valid alternative to BEVs and can also be hybrid (FCHEV) and plug-in hybrid (FCPHEV). Several sources cited show a positive trend of hydrogen in the transport sector, identifying a growing trend in the expansion of hydrogen infrastructure, although at this time, it is still at an early stage of development
  • 1.2K
  • 06 Dec 2021
Topic Review
Electric Motor and Battery Faults of Electric Vehicles
Fault detection and diagnosis (FDD) is of utmost importance in ensuring the safety and reliability of electric vehicles (EVs). The EV’s power train and energy storage, namely the electric motor drive and battery system, are critical components that are susceptible to different types of faults. Failure to detect and address these faults in a timely manner can lead to EV malfunctions and potentially catastrophic accidents. In the realm of EV applications, Permanent Magnet Synchronous Motors (PMSMs) and lithium-ion battery packs have garnered significant attention.
  • 1.1K
  • 21 Jul 2023
Topic Review
Electric Outboard Motor
Electric outboard motors are self contained propulsory units for boats, first invented in 1973 by Morton Ray of Ray Electric Outboards. These are not to be confused with trolling motors, which are not designed as a primary source of power. Most electric outboard motors have 0.5 to 4 kW direct current (DC) electric motors, operated at 12 to 60 volts DC. Recently developed outboard motors are powered with an alternating current (AC) or DC electric motor in the power head like a conventional petrol engine. With this setup, a motor can produce 10 kW output or more and is able to replace a petrol engine of 15 HP or more. The advantage of the induction or asynchronous motor is the power transfer to the rotor by means of electromagnetic induction. As these engines do not use permanent magnets, they require less maintenance and develop more torque at lower RPM.
  • 1.3K
  • 23 Nov 2022
Topic Review
Electric Powertrain Architectures in Off-Road Equipment
Though the wave of electric vehicles is transforming the on-road passenger and commercial vehicle fleets, similar attempts in the off-road equipment sector appear to be lacking. Because of the diverse equipment categories and varied applications, electrifying off-road equipment requires significant research and development.
  • 1.6K
  • 26 Aug 2022
Topic Review
Electric Powertrain Sizing for Motorcycles
As part of the intergovernmental and public interventions to reduce carbon dioxide emissions, there are no existing regulations to ban the sale of petrol motorcycles (PM), but it is expected that motorcycle regulations will follow car regulations with several years of delay. There is an emerging trend in motorcycle uptake, which will lead to new development projects with existing brands, and new brands, and will clearly increase the need for development tools that satisfies design challenges specific to electric motorcycles (EM) and electric powertrains.
  • 246
  • 24 Jan 2024
Topic Review
Electric Turbo Compound
An Electric Turbo Compound (ETC) system is defined where a turbine coupled to a generator (turbogenerator) is located in the exhaust gas flow of a reciprocating engine to harvest waste heat energy and convert it into electrical power. An example of an ETC system is where a turbogenerator is located downstream of a turbocharger turbine of an Internal Combustion Engine (ICE). The power generated from the ETC system can be used to feed into an electrical grid or provide power to local electrical loads such as engine auxiliaries. ETC systems are commercially available for stationary power gensets and at an advanced stage of development for automotive applications as a solution to the challenge of improving the fuel efficiency of gas and diesel engines by recovering waste energy from the exhaust gases.
  • 1.4K
  • 25 Oct 2022
Topic Review
Electric Vehicle Adoption in Oil-Producing Nations
Electric vehicles (EVs) are important elements in the global strategy to tackle climate change. EVs are widely considered to be more environmentally and economically efficient than internal combustion engine-based vehicles (ICEVs), and as the technology matures and availability increases, governments around the world are beginning to phase out ICEVs and promote EV adoption.
  • 473
  • 30 Aug 2022
Topic Review
Electric Vehicle Batteries
In electric and hybrid vehicles Life Cycle Assessments (LCAs), batteries play a central role and are in the spotlight of scientific community and public opinion. Automotive batteries constitute, together with the powertrain, the main differences between electric vehicles and internal combustion engine vehicles. For this reason, many decision makers and researchers wondered whether energy and environmental impacts from batteries production, can exceed the benefits generated during the vehicle’s use phase. In this framework, the purpose of the present literature review is to understand how large and variable the main impacts are due to automotive batteries’ life cycle, with particular attention to climate change impacts, and to support researchers with some methodological suggestions in the field of automotive batteries’ LCA. The results show that there is high variability in environmental impact assessment; CO2eq emissions per kWh of battery capacity range from 50 to 313 g CO2eq/kWh. Nevertheless, either using the lower or upper bounds of this range, electric vehicles result less carbon-intensive in their life cycle than corresponding diesel or petrol vehicles.
  • 836
  • 27 Oct 2020
Topic Review
Electric Vehicle Batteries Reuse
It is a fact that electric vehicles (EVs) are beneficial for climate protection. However, the current challenge is to decide on whether to reuse an EV battery or to recycle it after its first use. The concept of reusing (second life) of the battery is promising because, at the end of the first life, batteries from EVs can be used in several applications such as storing energy generated from renewable sources to support the government grid. 
  • 1.2K
  • 23 Apr 2021
Topic Review
Electric Vehicle Battery Cells
Nowadays, batteries for electric vehicles are expected to have a high energy density, allow fast charging and maintain long cycle life, while providing affordable traction, and complying with stringent safety and environmental standards. Extensive research on novel materials at cell level is hence needed for the continuous improvement of the batteries coupled towards achieving these requirements. 
  • 599
  • 26 Jul 2021
  • Page
  • of
  • 678
ScholarVision Creations